
AD-AIG 7 6 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH FIG 20/4
AEROELASTIC FLUTTER AND DIVERGENCE OF GRAPHITE/EPOXY CANTILEVER--ETC(U)
JAN 81 S .1 HOLLOWELL

UNCLASSI FIT-AFIT80-67TTNL



WAA

AEROELASTIC FLUTTER AND DIVERGENCE OF-GRAPHITE/JPOXY CANTI-

LEVERED PLATES WITH SENDING-TORSION STIFFNESS QOUPLING

_5TEVEN JAMES/HOLLOWELL

B.S., United States Air Force Academy
(1977)

0SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE

-DEGREE OF

IN

AERONAUTICS AND ASTRONAUTICS

at the DTICSFIECTED

MASSACHUSETTS INSTITUTE OF TECHNOLOGY ......
- '/ 17; j Jan.S2D81

Steven James Hollowell, 1980

The author hereby grants to M.I.T. permission to reproduce
and to distribute copies of this thesis document in whole or
in part.

Signature of Author , - .A-,,
Department of Aeronautics and Astronautics

December 11, 1980

RL6
_ Certified by __

V Jogn Dugudji

Thesis Supervisor
___ Accepted by ' __--

Harold Y. Wachman

Chairman, Departmental Graduate Committee

DISTRIBUTION STATEMENT A / ',.0 L-

Approved for public released -.
Distiibution Unlimited



. IINCI ASS
SECURIIY CLASSIIICATION OF TtIS PAGE (Whe"lmaaed)

REPORT DOCUMENTATION PAGE HWI^ INSrIHU('TioNI FORM

REPURT NUMBER 'OV ACCESSION NO. I RLCIPIENT'S CATALOG NUMMER

80-67T
4. TITLE (and Subtitle) Aeroelastic Flutter and Divergence 5 TYPE OF REPORT 6 PERIOD COVERED

of Graphite/Epoxy Can levered Plates with Bending- THESS/qk"?p 7 9N
Torsion Stiffness Coupling

6. PERFORMING OG. REPORT NUMBER

1. AUTNO('-) 6 CONTRACT OR GRANT NUMBR(aj

1Lt Steven James Hollowell

9 PEHFORMINGpHGANIZATIUN NAME AND ADDRESS I0 PROGRAM EL EMENT, PROJECT. TASK
AREA I WORK UNIT NUMBERS

AFIT STUDENT AT: MIT

iI. CCONTNOLLING OFFICE NAME AND ADDRESS 12. REPORT DATS

AFIT/NR Jan 81
WPAFB OH 45433 . NUMR OF PAGES

136
14 MONITORING AGENCY NAME A ADORESS(Il ddlleeesnt irn Conlruilnd OfIie) IS SECURITY CLASS. (at this teponf)

UNCLASS
Iso. DECLASSIFICATION/OOWI1NGRADING

SCHIOULE

16 DISTRIBUTION STATEMENT (of chis Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17 DISTRIBUTION STATEMENT (o the absitact entered In lock JO, it different team Re00)

tICOR C. LYNCIL tor. USAF
APPROVED FOR PUBLIC RELEASE: IAW AFR 190-17 Dieco of PbcA

23 JU N 1981 Alr Force Institute of Technology (ATC)
Wfht.Patterson AFB, OH 45433

19 KEY WORoS (Continue on ,.evo@ aide It necessary and Identify by black n. ,mb

20 ABSTRACT (Continue o n reverse side Ii necessary and Identify by block numbel)

ATTACHED

bI7 1-6 087.
DD , ',,NR 1473 EDITION OF I NOVS IS OBSOLETE UNCLASS

StCU4IT7; CLA -
-"

''ON Of- I e PA(,E 107",. P l k110,.



2
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ABSTRACT

The aeroelastic flutter and divergence behavior of
rectangular, graphite/epoxy1 -antilevered plates with vary-
ing amounts of bending-torsion_ stiffness coupling is inves-
tigated for incompressible flow. A general Rayleigh-Ritz
formulation is used to calculate flexibility influence coef-
ficients, static deflections, divergence velocities, vibra-
tion frequencies, and flutter velocities. Flutter calcula-
tions are done using the U-g method. Test plates were con-
structed and subjected to static, vibration and wind tunnel
tests. Wind tunnel tests indicated static deflections,
divergence instabilities, bending-torsion flutter at low
angles of attack, and stall flutter at high angles of attack.
Bending stiffness and first bending frequencies showed good
agreement between theory and experiment. Torsional stiffness
and first torsion frequencies were not accurately predicted.
'by the theory for highly coupled plates. Divergence velocities
and reduced flutter velocities showed reasonable agreement
between theory and experiment. Test plates with varying
amounts of coupling exhibited markedly different stall flutter
characteristics.
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CHAPTER I

INTRODUCTION

1.1 Background

Aeroelastic tailoring is broadly defined as the tech-

nology to design a lifting surface which exhibits a desired

aeroelastic response. Desired aeroelastic responses most

often considered are maximization of flutter and divergence

speeds. Other aeroelastic responses can be important de-

pending on the application. They include control reversal

speed, camber changes as a function of load and speed, and

angle of attack changes as a function of load. The aniso-

tropy of advanced composite materials or, more specifically,

the designers' ability to control that anisotropy by selec-

tive lamination, makes it an attractive material for aero-

elastic tailoring.

Aeroelastic tailoring, which exploits the advantage

of advanced composites, has received considerable attention

in recent literature. N.J. Krone, Jr. 1 concluded that

forward swept wings without divergence or weight penalties

may be possible through the use of selectively laminated

advanced composites. T.A. Weisshaar2 ,3 extended, analyti-

cally, Krone's conclusion to potentially practical wing

designs. Weisshaar concluded that the binding-torsion

stiffness coupling of anisotropic advanced composite
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materials was the key to eliminating divergence in forward

swept wings. V.C. Sherrer, T.J. Hertz, and M.H. Shirk
4

conducted a series of wind tunnel tests using simple plate-

like models of a forward swept wing. These tests essentially

verified Weisshaar's conclusion, and also showed that existing

analytical techniques (computer programs) would adequately

predict the divergence dynamic pressures for most test con-

ditions.

Under contract to the Air Force Flight Dynamics Lab-

oratory, General Dynamics Corporation developed a wing

5aeroelastic synthesis computer program (TSO) . The computer

program was intended to be a preliminary design tool for

optimization of wings with advanced composite structural box

skins. To this end, it used a direct Rayleigh-Ritz energy

formulation to model the structural deflections. The prog-

ram was capable of optimizing a wing skin design for several

different constraints, simultaneously. Published aeroelastic

tailoring studies5 ,6 ,7 using TSO have not examined, in depth,

the effect of structural bending-torsion coupling on flutter

speed in the absence of changes in other variables. Addi-

tionally, only very limited wind tunnel data are available

which examine the effect of structural bending torsion

coupling on flutter speed, or even that verify the accuracy

of flutter speeds generated by TSO. Finally, the phenomenon

known as stall flutter has received only limited attention
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as it relates to metal lifting surfaces 8 , and virtually

none as related to advanced composite lifting surfaces.

The references cited in this section by no means com-

prise a complete list of work done in this area. They should

be viewed more as an indicator of where emphasis has been

placed. One obstacle to conducting research in aeroelastic

tailoring is that much of the work done by the larger aero-

space corporations is proprietary and consequently is never

reported in literature accessible to the public.

1.2 Objectives

This study will attempt to ascertain the effect of

varying amounts of bending-torsion coupling on both the

divergence and flutter speeds of an unswept lifting surface

in incompressible flow. The lifting surface will be ideal-

ized by a cantilevered, rectangular, flat plate constructed

of laminated graphite/epoxy, and having a half-span aspect

ratio of 4 (8 by standard aerodynamic convention).

Specific objectives are to

(1) Develop an analytical formulation to predict static

deflections, natural vibration frequencies, divergence

speed, and flutter speed for idealized lifting surfaces.

The formulation must be applicable to a plate having

substantial bending-torsion coupling, but limited to

a mid-plane symmetric lamination arrangement.
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(2) Evaluate the effect of bending-torsion coupling on

the idealized lifting surface by performing static

deflection, vibration, and wind tunnel tests on sel-

ected cantilevered plates having varying amounts of

bending-torsion coupling.

(3) Investigate the effects of bending-torsion coupling on

stall flutter velocity. This will be limited to an

experiment evaluation.

(4) Determine the accuracy of the analytical formulation

by comparing theoretical and experimental results.

1.3 Organization

Chapter II develops a general Rayleigh-Ritz energy

formulation to model lateral deflections of a laminated

cantilever plate. Solutions for both two term and three

term deflection equations are derived. The two term general

4 solution is than applied to a static deflection problem to

calculate a 2 x 2 matrix of flexibility influence coef-

ficients, and to a divergence problem to calculate the

divergence velocity of the idealized lifting surface. Both

two and three term solut.ons are applied to a free vibration

problem to determine the lower two or three vibration fre-

quencies. Finally, the two term solution is applied to a
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classical bending-torsion, potential flow, flutter problem

using the U-g method.

Chapter III presents the experimental test apparatus

and procedures for the static deflection tests, free vibra-

tion tests, and wind tunnel tests (flutter and divergence).

The test results are then discussed, commenting on possible

sources of error.

Chapter IV compares the analytical and theoretical

results, identifies areas of good and poor agreement, and

comments on sources of inaccuracies in the theoretical

analysis, as well as ways to improve it.

Chapter V summarizes the conclusions reached in the

previous chapters and makes recommendations for further

study.

' _ + ' i
+

-' I . . - -- ,+ ..- __ __ _ - - .- - . ..- +- - , -
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CHAPTER II

THEORY

2.1 Anisotropic Plate Flexural Stiffness

The flexural modulus (stiffness) components of a lami-
nated advanced composite (graphite/epoxy in this study) plate

are dependent on both the fiber orientation and stacking

sequence of the individual laminae (plies). To simplify

fabrication of test specimens, only laminated plates with

a mid-plane symmetric stacking sequence are considered

The ply angles (6) follow the sign convention in Fig. 1.

x
x
t

U

y

Figure 1. Ply Angle Sign Convention
\ \-
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The in-plane, on-axis lamina modulus components (Qij)

were obtained from the orthotropic engineering constants

for Hercules AS/3501-6 graphite/epoxy, from which the test

specimens were to be fabricated. These engineering constants

take on different values depending on whether they are ob-

tained from bending or stretching tests. Engineering con-

stants obtained from each type of test appear in Appendix A,

and their validity for vibration problems is briefly dis-

cussed in Chapter IV (Reference 10 has an in-depth treatment
11

of this subject.) The ij terms are defined as

Q = EL/(l - vLTVTL) (2-1a)

Q22= ET/(l - VLTVTL) (2-1b)

Q12= Q21 LTE T/(l - V LT TL) (2-1c)

Q66= GLT (2-1d)

where VTL = (ET/EL)vLT

(6)
The off-axis lamina modulus components (Q)ij were

obtained by first defining a set of invariants
1 1

1i = [Qll + Q22 + 2Q1 21/4 (2-2a)

12 = IQ11 + Q22 - 2Q1 2 + 4Q6 61/8 (2-2b)

R1 = [Qll - Q2 21/2 (2-2c)

R2 Q + Q - 2Q12 - 4Q66]/8 (2-2d)

2.. 11 22 126
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and using the invariants in the following transformation

relations .

Q(O) I + I + R cos2e + R cos4e (2-3a)
11 1 2 1 2

Q(e) I + I - R cos2e + R cos4e (2-3b)
22 1 2 1 2

Q(6) = I - I - R cos4e (2-3c)
12 1 2 2

Q(e) = I - R cos4e (2-3d)
66 2 2

Q() = 1 R sin2e + R sin4e (2-3e)
16 21 2

Q(e) 112
26 = R sin2e - R sin4e (2-3f)

where 9 is the ply angle (Fig. 1).

The flexural modulus (D ij)for an n-ply laminate with

arbitrary ply angle orientation is obtained from

n o(ek )  3 _3
Di = E - ij [(Zk Zk- )/31 i,j = 1,2,6 (2-4)

'~k=1 1 -

where
th

ek = ply angle of the (k) ply

Zk = distance from the mid-plane to the upper sur-
th

face of the (k) ply (positive above mid-plane,

negative below mid-plane)

Zk-1 distance from the midplane to the lower surface

of the (k)th ply

Flexural modulus values (Dll, D6 6, D1 6 ) for (02/9015,



15

(+302/0]s, [+452/Os, and [t45/0] laminates appear in

Appendix A. The reader should observe that, using the

equations in this section, the flexural moduli of a (+62/0]s

laminate will be the same as those for a [-62/01s laminate,

with the exception of a negative sign on D1 6 and D26 for the

latter laminate.

2.2 General Rayleigh-Ritz Formulation

The direct Rayleigh-Ritz energy method is a relatively

simple, straightforward approximation for the plate deflec-

tions, as required for the static- deflection, free vibration,

divergence, and flutter analyses in this study. The Ray-

leigh-Ritz method also has the advantage of showing the

effect of the individual variables on the solution more

clearly than other more accurate methods, such as finite

element analysis. Whether or not the results of the Ray-

leigh-Ritz analysis developed in this chapter correlate

sufficiently well with experimental results is discussed in

Chapter IV. To simplify computation, the "wing" is idealized

by a rectangular cantilevered flat plate with uniform thick-

ness. Further, to allow the stiffness properties of the

plate to be more accurately depicted, an aerodynamic fairing

will not be used over the plate.

The Rayleigh-Ritz analysis begins by assuming a deflec-

tion shape for the structure. If only lateral deflections
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(w) are allowed, the single deflection equation, written in

generalized coordiates is:

n
W E Y i(x,y)q.'(t) (2-5)

i=l

where yi(x,y) is the nondimensional deflection or mode shape

of the (i) t h mode (which must satisfy geometric boundary

conditions for a cantilevered plate), and qi(t) is the gen-

eralized displacement of the (i)th mode. The generalized

displacement is a function only of time and has units of

length. For convenience and consistency, the coordinate

system in Fig. 2 will be used for all problems.

The deflection equation is simplified by assuming

(1) the plate is chordwise rigid when undergoing torsional

deflections,

(2) the plate does not exhibit chordwise bending for any

of the problems to be developed,

(3) a single term in the deflection equation for each of

the desired deflection modes (first bending and first

torsion; or first bending, second bending, and first

torsion) will adequately represent the actual deflec-

tions of the plate. A further requirement here, to

insure rapid convergence, is that the mode shape for

each term must accurately depict the deflection for

that mode. The two term deflection equation can now

be written as
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cz

X fixed
2 edge

(a) Georretric Sign Convention

Az

+a deflected
position

U

-'WE (EA)

undeflected position

(b) Force-4Mzent-Deflection Sign Convention

Figure 2. Sign conventions
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w = l(X)Wl(y)ql(t) + a(x)1 (y)q 2 (t) (2-6)

where 0i(x) and p.i(y) are one dimensional mode shapes for

the (i)th mode. If the first term represents the first

bending mode, then 01 (y) is simply a rigid-body translation

(01 (y) = 1). If the second term represents the first tor-

sion mode, then, by the first assumption, a(y) is a rigid

body rotation (0 (y) = y/c). Incorporating these into Eq.

2-6 yields

w = c 1 (x)ql(t) + (y/c)O4L(x)q 2 (t) (2-7)

We can apply the same analogy to the three term deflection

equation, which is written as

w = l(x)ql(t) + 0 2 (x)q 2 (t) + (y/c)4e(x)q3 (t) (2-8)

In Fig. 2b, the elastic axis (EA) is, by definition,

located at the midchord of the plate (y = 0). Lateral def-

lection of the elastic axis is designated wE and rotation

of the plate about its elastic axis is designated a. One

observes that wE and a are not generalized coordinates and,

in fact, q2 in Eq. 2-7 and a do not even have the same units.

The units of a are radians, while q2 has units of length.

To write wE and a in generalized coordinates (for Eq. 2-7),

the following relations are used:

i-- . .. . m "I ; I ' - k . - ' ...
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wE = y=0 = 1 (x)ql(t) (2-9)

_ w = (4 (x)/c)q 2 (t) (2-10)a y

The importance of this transformation will become apparent

when aerodynamic forces are applied. Finally, from Fig. 2b,

FE is a lateral force applied at the elastic axis and ME is

a moment about the elastic axis.

The strain energy (V) for a symmetric anisotropic lami-

nate is12

ci2 2
Sc [D1 1 (w, xx) + 2D1 2w, xxW'yy

0 -T

+ D22(Wyy) 2 + 4D 16W, xxW, yy+ 4D 26W, yyW,xy

+ 4D66(Wxy) 21 dydx (2-11)

where a comma denotes partial differentiation.

2.2.1 Two Term Deflection Equation

W = "~ + Y O' q W, =(l/c) 'q
xx q c 2 xy a q2

W,yy =0 (2-12)

where: ( ) = d/dx and ( )" = d2 /dx2 . Substituting Eq. 2-12

into Eq. 2-11 and performing the chordwise integration yields
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q2  2 ) 2dx] + q1 q2 [2D1 6 0 a

2[cD.1 -X 2 D66 Za)

q2 II C 1  (c) 2 dx + 2( )2dx] (2-13)24 0 c 0

The kinetic energy expression for the plate is

C
1 

.2
T = T f m w dydx (2-14)

0

where (U) = d/dt and m is the mass/area.

m = PGEtp (2-15)

where pGE is the specific gravity of graphite/epoxy and tp is

the plate thickness.

S= l + (Y/c) q2  (2-16)

Performing the chordwise integration, Eq. 2-14 then becomes

= j2 ,mc 2 * 2 Rdx]+ q 2  mS f 2dx] (2-17)
T 0 1 24 0

The change in external work (W e ) can be expressed as

z c

6W = f f pZ wdydx (2-18)
0 -f

where pz is a distributed lateral load and

&W = 016q, + -0 6q2  (2-19)

-- "' "~~~ ~ ~ a" 2 : a 
' '

'l : - " : : " ' - - - : :!,n- ,-.' - , , . , .
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Then, by substitution

6We = 6qQl + 6q2Q2 (2-20)

where

9. c

Qi- 0~ C 2Pz~idydx
ad= pc PZ idydx2

and c

Q2 f Pz Z dydx
0 -c

The relationship between the work and energy expressions

is obtained through Lagrange's equation, which is a statement

of Hamilton's energy principle; the basic premise of the

13Rayleigh-Ritz method. Lagrange's equation is

d T + aV _ 3T = Qi (2-21)
dt qi qi qi

(i =

where:

V =0

av 211  92D 9.ol-qli 2q - I () 2 dx ] + q2 16
2 0 0

av q (2D f cDI1I 112d
v "idxl +2q 2  f

-q q [2D 1 6 0 + -2 -- I 0 0

+ 2 D 6 6. 0 ( ) 2 dx

0
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3T = 24 1 [ f pl dx]
a41  0

d T2
- = 1 mc 2 dx]
HE l 0

mc

3T = 2q2  -2 dx
ai 2 0f a

d T c 2
( - q 2 [ o K dxl
S2 0

From Eq. 2-21, the general equations of motion for the plate

with a two term assumed displacement equation are

mc 2 dx] + ql [ (cp) 2dx]
0 0

+ q2 [ 2D1 6 0 dx] = Q, (2-22a)
0

2 - 0 2 dx] + ql [ 2D16  f dx]

CD11 .
+ q2 [ f d x

2 0

4D66 Z 2
+ - (0() dx] = (2-22b)c 0

To make these equations more compact, nondimensional expres-

sions for the integrals are defined below. These integral

expressions may be evaluated exactly, or using any of several
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numerical integration techniques, if the integrand is tx)oo

complicated.

I
1-- l dx (2-23a)3 0 1

4
0 2
"4" dx (2-23c)

15 0 .0

z
16 - 22 f q"p' dx (2-23d)lit

17 - f3 (4 )2 dx (2-23e)
7 ~0 1

2

18 t 0 (Oa') dx (2-23f)
0

£
I 3  (t) 2 dx (2-24g)

0 O

Incorporating the expressions of Eq. 2-23 into Eqs. 2-22a

and b yields the final form of the equations of motion.

~h(c. 4  1 D1lC 2D 1 6

[mcI4] + ql [ 17 + q2 D 16 = Q (2.24a)

mcZ q, 2D16

42 [ 15] + ql [ 6

4D 6 6  
D C2

+ 66~ (1 + 11 1Q
2 c 8 48D 6 6 .Ill) = 2

(2.24b)

EQUATIONS OF MOTION

In Eq. 2-24b, the term
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C2D 1 1

48ZzD 66  11

represents the warping stiffness, which is inversely pro-

portional to the square of the plate aspect ratio (Z/c).

For the plates in this study (AR = 4), this term's contri-

bution will be small.

2.2.2 Three Term Deflection Equation

The derivation of the equations of motion for the three

term deflection equation is almost identical to the two-term

deflection equation derivation. Therefore, only the final

expressions for V, T, 6We , and Lagrange's equation will be

presented. As one would expect, there will be three equa-

tions of motion instead of two.

Deflection equation:

w = l(x)ql(t) + p2 (x)q2 (t) + Y4 (x)q3(t) (2-25)

Strain energy:

D 2 Dllc 092 2
2 " (c, dx]q 1 + 2 j ()dx]q 2

V -2 of 2 0 2 2

Dllc z 12 2D66 2 2 2
+ 11- f (p") dx + 6 dxq 3

+ [ Dn1d f , dxlqlq2 + I 2D16  f xqq
0 0

+ [ 2D16  f q2c adx]q2q3  (2-26)
0
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Kinetic energy:

T1 i2C l2d x ] + i2 2 -2 2 m ! dx ]1 2 1c 7 2 mc2 2
0 0

+ .2 Emc dx] + qq 2 [mc dx]

(2-27)

Change in external work!

6We = q+ + Q3 6q 3  (2-28)

where: C 2Q1 01 -cf 2 pz~l dydx

2
0 2

Q cf2  pz 2 dydx
0

QI 2  p -a dydx0 - zc2

Before applying Lagrange's equation, we eliminate terms

with z 9
j l 2dx and / 0"j" dx0 120 12

by requiring that 1 (x) and 0 2 (x) be orthogonal functions.

Now, using the same nondimensional expressions for the inte-

grals as before, the equations of motion obtained from

Lagrange's equations are:

- i ' -, m l , i i • " . ..
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.£IDllc 2D1 6

41 [mc£ 14 ]+ ql D 1 - 1] + q 3  - 16 ]

= 1 (2-29a)

mc i 1+DIIc 2D1
q2 [ m£I2]+ q2 D[  i I] + q 2D 16 1 ]

12 £ i0 £2 9

Q 2 (2-29b)

mc2D 16 2D164 3  5] + ql [ 2 16] + q2 [ z 19]
12£2£

4D6 6  DllC2
+ q3[ _ - + 2 l1)] Q3c£ 48D 6 6 £2

(2-29c)

where
£

19 =£ 2 ; dx
0

2

10 = Z f (W,,)2 dx
0 2£

2 dx
112 z 0~ 2 d• 0

The functions used in this study for the mode shapes

( I 2' k ) are combinations of sin, cos, sinh, and cosh.

These functions are known as "beam" modes because they

very closely model the deflections of an isotropic Euler

beam. The first bending mode shape (0I) and the first
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torsion mode shape (¢ ) were obtained from Ref. 14 and the

second bending mode was obtained from Ref. 15. These mode

shapes, along with numerical values for the nondimensional

integral expressions, appear in Appendix B.

2.3 Static Deflection Problem

The static deflection problem is formulated as an

analytical model of the experimental deflection tests

described in Chapter III. For this problem, the canti-

levered plate is subjected to a concentrated unit load and

moment, individually applied at the 3/4 length point on

the elastic axis. Since the result of the experimental

tests was a 2 x 2 flexibility influence coefficient matrix,

the same result is desired here, to allow direct comparison.

The 2 x 2 matrix requirement dictates that we use the equa-

tions of motion derived from the two term deflection equa-

tion. Observing that acceleration (q) for static deflec-

tions is zero, Eqs. 2-25a and b are repeated here with q

terms eliminated.

D1 1C 2D16
ql --- 17 ] + q 2 [ -i- 16 = 1 (2-30a)

2D1 6  cD 4D66
q 16I + q 11 -I6 1=021 71. 6 2 1-2T  Ill+ c 9 8 2

(2-30b)

I - ; "
l ' ' m 

'
- - .. . . - . . . - - :
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The generalized forces (Qi) obtained from Eq. 2-20 are
3-

Q = FT I ( 2 ) (2-31a)

Q = MTr( t )/c (2-31b)

where Ft is a concentrated test load and Mt is a concentrated

test moment such that

FT = f c1 2 Pz dydx and MT = f cf Y Pz dydx
0 2 2

The test forces and moments are applied at the same loca-
tions and with the same sign conventions as F and ME in

E M

Fig. 2b. By the relations of Eqs. 2-9 and 2-10, the def-

3lections WE and 4 taken at x = -£ are

3
wE = 2I Z ) ql (2-32)

a = 1Z )/c I q (2-33)

Assuming unit forces and moments, instead of unit

displacements, dictates that one will obtain flexibility

inflence coefficients (c ij) by solving the equations of

motion. The matrix of influence coefficients must then be

inverted to obtain the stiffness influence coefficients

(k ij). This is generally much easier to accomplish experi-

mentally than to try and obtain the stiffness influence

coefficients directly, by applying unit displacements to
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the structure. To aid in conceptualizing the problem, the

equations of motion in terms of flexibility influences are

presented.

wE = cllFT + cI2MT (2-34a)

a = c21FT + c2 2M4T (2-34b)

The flexibility influence coefficients are defined as follows.

Cll WE/FT
M T= 0

c w/
12 E/ T  FT= . (2-35)

c 21=: C/FT I

C22- e/ T I

To obtain the four flexibility influence coefficients,

Eqs. 2-30a and b must be solved simultaneously twice, each

time with a different combination of Q1 and Q2 " The first

combination (FT = 1 and MT = 0) will be called "Test 1",

and the second combination (FT = 0 and MT = 1) will be called

"Test 2". The values for q and q2 obtained from Test 1,

when substituted into Eqs. 2-32 and 2-33, yield c1l and c2 1

as defined by Eq. 2-35. Similarly, q1 and q2 from Test 2
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yield c1 2 and c2 2. The final step, if desired, is to

arrange the flexibility influence coefficients in a 2 x 2

matrix and invert it to obtain the stiffness influence co-

efficients.

2.4 Aeroelastic Divergence Problem

Aeroelastic divergence is a static deflection problem

such that the aerodynamic forces and moments applied to the

cantilevered plate are a function of the torsional deflec-

tion of the plate. Divergence is defined as the point at

which the restoring forces generated by the structure can

no longer counteract the aerodynamic forces. At that point,

by the simple linear theory used in this study, the deflec-

tions increase without bound resulting in structural failure.

Actually, as discussed in Chapter III, both structural and

aerodyanmic nonlinearities come into play at large deflec-

tions and limit the maximum deflections to finite values.

However, structural failure may still occur. These non-

linearities, while important, will not be considered in this

development.

The static forms (q = 0) of Eqs. 2-25a and b are re-

peated here.

Dllc 2D1 6
q ] + q2 - I = Q1 (2-36a)
S3 76
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2D16  4D66  D11 c
2

ql [  12 6 ] + q2 [ 1(
c 8 48D662 6 1

=Q2 (2-36b)

The generalized forces (Qi) obtained from Eq. 2-20 are

Z1£

Q1= 0 lLE dx (2-37a)

Q = - ME dx (2-37b)
0

where

c
LE = C1  Pz dy

2

ME c 2  Y PZ dy

LE is the lift per unit length acting at the elastic axis

of the plate, in the same direction as FE (Fig. 2b). ME

is the aerodynamic moment per unit length, again acting

at the elastic axis.

For this simple static analysis, two-dimensional

aerodynamic strip theory was deemed to provide sufficient

accuracy. The lift per unit length and moment per unit

length are

LE = qca 0 (a 0 + a e) (2-38a)

ME = qcea 0 (CL0 + %e) (2-38b)
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where q is the dynamic pressure, e is the distance between

the elastic axis and the aerodynamic center (quarterchord)

of the wing, a0 is the two dimensional lift curve slope,

a0 is the rigid plate angle of attack and ae is the flexible

twist of the plate, such that a0 + ae = a (Fig. 2b).

The lift curve slope of a flat plate of infinite

length (span) is the well known value 27. This two dimen-

sional lift curve slope can be empirically corrected to

account for the affects of finite span by applying the

correction suggested in Ref. 13.

__C z AR
~L a AR + 2 ] (2-39)

where C£Z/aa is the corrected lift curve slope and AR is

the aspect ratio (2k/c) of an equivalent wing, as defined

for an aircraft wing composed of two cantilevered plates.

Equations 2-38a and b must be transformed to generalized

coordinates before they are incorporated in the equations

of motion. As before, Eq. 2-10 is used to transform e

only. The generalized forces finally take the form:

=qcZ II + ] (2-40a)Q1 =  a 0c [011 c 3

-= qeZ a Z + q 2 ] (2-40b)Q2 a e 012 + c 5

where the nondimensional integral expressions are
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= 2- dx
- dx

012 = I dx
0

113 = i ~ dx

15 2dx

Substituting Eqs. 2-40a and b into Eqs. 2-36a and b yields

the complete equations of motion. These equations are

presented here in matrix form to make the solution technique

more apparent.

D11 2D 16 16 - qZ - 19, 7 z 6 2 6 Da 13 q

2D6 4D6 DI c 2  e 3 C
16 1[ 6 (18 + -1l1) 1 q e -ZI q2

z2 6cz 48D 66z 2  11c aa 25

qc ac Z

2C 0 
(2- 41)

a a 2

Classical divergence is normally evaluated at zero

initial angle of attack (a0 = 0), which is also assumed

" .. .-.: - n " . . .. - - . - -I -' - . - - : -. :
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here. Therefore, a unique solution to Eq. 2-41, with

-O = 0, can be found by setting the determinant of the coef-

ficient matrix equal to zero and solving for the dynamic

pressure (q). The dynamic pressure which makes the deter-

minant go to zero is the divergence dynamic pressure (q D),

which is related to the divergence velocity (UD) by

1 P=U2  
(2-42)

After evaluating the determinant, we obtain the following

expression for qD'

D 1 D16 2
4D II +1 - I__

q 4D 66 48ii66z 7 11 7.8 DI1 D6 6  6

D t I I 2D1 6  C Z

57 36 ]-

(2-43)

When the integrals are evaluated using the beam mode

shapes in Appendix B, the contribution of

Dll
-- I l

48D 66
£2

will be small. The contribution of

2
16 2
D D 16D11D66

to the value of qD' while not negligibly small, is much less
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than that 
of

2D 1 6

DII1

The denominator of Eq. 2-44 will be zero when

DI6- eI517 0.3 S (for examples in (2-44)
D11 2£I 3 1 6  this study)

When D1 6/D1 1 equals this critical value, qD becomes infinite

and the wing will not diverge. Above the critical value,

qD is negative and no real divergence occurs because UD will

be an imaginary number. Below the critical value, including

all negative values for D1 6/D11 , there will be a finite,

real UD.

The physical mechanisms which cause this to be so are

readily apparent in Fig. 3a and b. Figure 3a is a plate

with a substantial positive DI6 . In this case, aerodynamic

forces arising from plate displacements tend to return it

to equilibrium, while just the opposite occurs with the plate

having negative D1 6 (Fig. 3b).

For the case where there is a known, nonzero, initial

angle of attack, and a known dynamic pressure, the static

deflections of the structure (a and wE) can be obtained by

solving the equations of Eq. 2-41 simultaneously. For this

study, only tip deflections are evaluated, because they

were obtained experimentally.

- --i:-*-
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Figure 3. Static Deflection Behavior
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Eq. 2-41 can be rewritten as

kllql + k12q2= al O  (2-45a)

k21ql + k 2 2 q 2  = a 2 a 0  (2-45b)

where
DllC

11 -1-

k 2D1 6 1C

12 = F 6 q- q 13

2D16
21 -- 16

k 4D66 + D C2 qeIC

22 c£ 8 48D 66Z 11- c a- 5

ac
a, = qcZ-I 1

a2  = qeZ- 12

By solving Eqs. 2-45a and b simultaneously, one obtains the

following expressions for ql and q2 "

a 2a0 - k 22 q2ql = k 2  (2-46a)

[ ak21- a2 kll ]

q = k (2-46b)
2 k 1 2 k2 1  11 kl22]

The generalized deflections are then transformed to

actual deflections (ae and w E ) using Eqs. 2-9 and 2-10,

where i and are evaluated at x Z .. As before, a

.. .-- i : ' - - • , .. -"- --- ' . ... .
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(Fig. 2b) equals the sum of a and ae. The total angle of

attack and bending deflection at the tip are

S(x=)21

eTIP = [1+ ck k ] 0
12 21 11 22

(2-47a)

a2  k22 alk 2 1 - a2kll
TIP k21 k21 k12k2 1 - k)i(x= ) 0

(2-47b)

2.5 Free Vibration Problem

The free vibration problem is formulated by setting

the generalized forces (Qi) equal to zero in either Eqs.

2-25a and b, or Eqs. 2-29a, b and c. To make the equations

of motion into algebraic equations instead of differential

equations, one assumes that the motions of the plate will

be harmonic. For harmonic (sinusoidal) motion, the gener-

alized displacements can be expressed as

= qe i t  =- 2 qe iwt (2-48)

where w is the frequency. These expressions are substituted

into the differential equations of motion (Eqs. 2-25 and

2-29) to obtain the sinusoidal equations of motion. The

sinusoidal equations of motion are presented here, in matrix

-- - .g -i.,-
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form, for both the two term and three term deflection

equations.

Two term deflection equation:

(D11 c (2D 1 6  q

( )- _
2 (mcZI 4 ) £16)

=0

16,) [4D66(I8 + I ] 2(mC£IZ2 6 8Z2 115 )  q
£2 ck 48D 66  12

(2-49)

Three term deflection equation:

(IDll 2 2D167_ ) - w 4 0 _i )

Dllc 2D16

0 - - ~rC 1 2 ) - 9

22D16 16 4D66 DI (
6 Z2 c£ 48D66£

2  _

q2 =0 (2-50)
q3

One obtains a unique solution to either Eq. 2-49 or

Eq. 2-50 by setting the determinant of the coefficient matrix

equal to zero and solving for w2 (eigenvalue). The natural
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vibration frequencies (w n) are obtained by taking the square

root of each eigenvalue. From Eq. 2-49, one obtains two

natural frequencies (first bending and first torsion), and

from Eq. 2-50, one obtains three natural frequencies (first

bending, second bending and first torsion).

To simplify calculations, the warping stiffness term

DI2
D11a2

48D 66 2

has been eliminated because its contribution is small for

plates with moderate to high aspect ratios. The frequencies

obtained using the mode shapes in Appendix B are compared

in Chapter IV with experimentally obtained frequencies.

2.6 Aeroelastic Flutter Problem

The flutter problem is formulated using an indirect

method widely known as the U-g method. In this method,

the structural damping coefficient (g), introduced into

the equations of motion, is plotted versus velocity for

each vibration mode. Since solutions to the equations of

motion represent conditions for neutral stability, the

value of g obtained in this manner represents the amount

of damping that must be added to the structure to attain

neutral stability (flutter) at the given velocity. Therefore,

- -- -:I+ I " ° . r :' ' : • . * " ., . -- ........... ... .. . . ..-
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negative values of structural damping indicate that the

structure is stable. Flutter will occur when the artificial

structural damping equals the actual damping of the structure.

To simplify calculations, the flutter problem will be formu-

lated using only the equations of motion from the two term

deflection equation.

The equations of motion (Eqs. 2-24a and b), as derived

in Section 2.2, again assuming sinusoidal motion and neg-

lecting the warping stiffness contribution, are
lqll l Ql/iWt 1

-J [i+ [ij q .Q/e
q2 q2  Q2/e

(2-51)

where mc2.14  0

M j0 m2cI

2D1 6
16

Zl3_ 17 -, 3 6
K Kij] 

i

2D16  4D6 6
k 16 ck 8

and the generalized forces (Qi) obtained from Eq. 2-20 are
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Q1= f E dx (2-52a)0c

where LE = c 2 Pz dy

Q = . - -ME dx (2-52b)

22
-C

where ME = 2 Y Pz dy

Since aerodynamic forces and moments obtained by assuming

steady flow are generally inadequate for realistic flutter

calculations, complete unsteady aerodynamic expressions

will be used. Unsteady aerodynamic lift (LE) and moment

(ME) expressions derived in Ref. 13 have been suitably trans-

formed to the coordinate system in Fig. 2. The reader is

cautioned that the coordinate system used throughout this

study differs from the standard aeroelastic coordinate

system used in Ref. 13. The difference being the +wE here

is -h in Ref. 13. The aerodyanmic expressions are

LE  = Tpb
2 [- E + U - baa ] + 27 pUbC (k) [-WE

+ Ui + b(1/2 - a)& ] (2-53a)

ME = Trpb
3 [-aQ E - U(1/2 - a)a - b(1/8 + a 2 )*] +

TrpUb2 (1/2 + a) C(k) [-WE + Ua + b(1/2 - a)& ]

(2-53b)
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where b = semichord

a = (distance EA is aft of midchord)/b (zero in

this study)

k = reduced frequency (wb/U)

C(k) = Theodorsen function

Assuming sinusoidal motion

w E t e iWt

, iwt )w

wE = iWwEe a = iWe i t

WE _= 2zW iww
2 ae iWt

the aerodynamic expressions, after some algebraic manipu-

lation, become

2 L WE it

W2 b3{[- L3 + iLj - + L 3 + iL 4 ] L e
b

(2-54a)

where [ +iL 2  2iC(k)

2CWk)

L 3 + iL 4 ] = a + -5k + k [ 1 + (1 - 2a) C(k)]

AWE i~t

E W2 Tpb 4  M 1 + iM 2 ] - + ( M3 + iM4 ]a} e
b

(2-54b)

where [M 1 + iM2  a -i (1 + 2a) C(k)
1 2 J , "-..
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M3 + iM4 ] (1/8 + a 2 ) + (1 + 2a)

3 2 C(k)

+ [(1/2 - 2a 2 ) C(k) - (1/2 - a)]

Equations 2-54a and b are substituted into Eqs. 2-52a and b.

One observes that, since the plate in this study has a con-

stant chord, variables b, [ L1 + iL2 L, 3 + iL4 ,

[ M1 + iM 2 1, and [ M3 + iM4 ] are not functions of x and

can be brought outside the integral. Making use of the trans-

formation equations (2-9 and 2-10), and expressing the integ-

rals in nondimensional form, we arrive at the final expres-

sions for the generalized forces.

= wZlpb 3 j[ L1+ i L 2 ]£ZI4_
b

L3 + iL4 )3 q2 } e t (2-55a)

c

= wrrp 4  [ M-I- iM2 ]£13Q2 = 2 T b 4 1( M--m2 Z ql +

bc

M3+ iM4 ]£I5 it

2 q 2  e (2-55b)

where 13 1 f di0
0 £0 d

.4f c dx
0

z 2 dxIs - 1
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Substituting Eqs. 2-56a and b into Eq. 2-51 and can-

celing e i t yields a new form of the equations of motion,

which are written here in contracted matrix form.

K - W 2A] = 0 (2-56)

where the elements of the K.. and A.. matrices are given as

cDll

I7

K 2D 1 6

12 2 6

2D1
K2 1 - 1 16

4D66
K2 2  I 8.

11 mc£1 4 + rpb 2I4 [ L1 + iL2

A12 = i £ b 3 13 [ L3 + iL 4c

A 2 1 = Tr Lb3 13 [ I + iM2

c

2 2 - 1 5 -c 2 I5 [ M3 + iM 412cc

Structural damping is proportional to, and opposes,

the deflection of the structure. The structural damping

coefficient (g) is introduced into Eq. 2-56 by multiplying

the B matrix by (1 + ig). The methodology behind this step
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is treated in depth in Ref. 13. An assumption here is that

the linear damping coefficient (gh) is equal to the rotary

damping coefficient (g ). It is also convenient to divide

Eq. 2-56 by -w2 and combine it with the (1 + ig) term to

form a complex eigenvalue (Z), defined as

Z (1 + ig (2-57)
W 2

Equation 2-53 now becomes

I A- KZ ] =0 (2-58)

where the elements of K are real and the elements of A are

complex. The matrix [ A - KZ I is put into standard eigen-
-I

value form by premultiplying by K , resulting in

S-i A- IZ =0 (2-59)

where I is an identity matrix. A unique solution to Eq.

2-59 is obtained by setting the determinant of the coeffi-

cient matrix equal to zero, and solving for Z. For a 2 x 2

matrix, the two Z-values correspond to the two plate vibra-

tion modes (first bending and first torsion).

The solution procedure is to pick a value for the re-

duced frequency (k) and solve Eq. 2-59 for Zi. The frequency

structural damping coefficient and velocity are obtained

from Z by the following relations.
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W= 1g = I U - bw/k (2-60ab,c)
'e-TZT Re{Z}

A new k value is chosen and the procedure is repeated.

Finally, a U-g diagram is created by plotting the structural

damping for each root (Z) versus velocity, or a nondimensional

flutter speed (U/bw a), were w is the torsional natural vib-

ration frequency. One can get a reasonable approximation for

w by picking a very large value for k and solving Eqs. 2-59

and 2-60a for the torsion root. This is essentially the

structural vibration frequency when U equals zero. U-g

diagrams for all the laminated plates considered in this

study appear in Appendix B. The flutter velocity (UF) was

conservatively chosen to be the point where the damping

coefficient from either root first crosses the U-axis.

Solving the flutter problem is further complicated by

the presence of the Theodorsen function (C(k)). The Theo-

dorsen function is a nonrational functional which can be

expressed exactly in terms of modified Bessel functions of

the second kind. Since Eq. 2-59 was to be implemented on

a digital computer and solved many times for different

values of k, an approximation for C(k) was desired. By

taking the Laplace Transform of R.T. Jones' exponential

approximation, one obtains a rational expression for C(k).

This expression is16
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0.5s 2 + 0.2808s + 0.01365C(s) = -,,(2-61)
S + 0.3455s + 0.01365

where s is ik.

The flutter problem is now completely defined. For

actual computation, taking the determinant of the 2 x 2

coefficient matrix is straightforward, the only complica-

tions being that (1) the K-matrix must first be inverted

and (2) that the coefficients of the A-matrix are all com-

plex. Because of the simplicity of the problem, the temp-

tation is to solve it manually. However, be advised that a

typical U-g plot requires on the order of 20 data points.

Each data point requires that Eq. 2-59 be solved for a new

k value.

I(
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CHAPTER III

EXPERIMENTS

3.1 Test Specimen Selection

Prior to making any test specimens, criteria which de-

fined desirable, and sometimes essential, characteristics

of the test specimens were established. These criteria in-

cluded

(1) Test specimens must exhibit a wide range of bending-

torsion coupling stiffness.

(2) Test specimens must be rectangular, constant thickness,

flat plates with zero sweep. The requirement for a

flat plate dictated using a symmetric laminate, since

an unsymmetric laminate would warp during cure.

(3) Test specimens would be made from Hercules AS/3501-6

graphite/epoxy since it was available at M.I.T.

(4) Test specimens would have an aspect ratio of four,

since this would be representative of an aircraft wing

with an aspect ratio of eight.

(5) Test specimens should exhibit flutter and divergence

within the 0 - 30 m/sec speed range of the acoustic

wind tunnel at M.I.T.

(6) The test specimens should be small enought to be made

using standard TELAC (Technology Laboratory for Ad-

vanced Composites) ply cutting templates and curing
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plates. Additionally, a small size was desirable be-

cause the effect of slight material warping, often

encountered during curing, would be minimized.

(7) The laminate should be able to withstand repeated

large static and oscillatory loads.

Criteria five and six directly oppose one another when

trying to arrive at an optimum design. Trying to satisfy

both of them dictated a very thin plate. Also, to achieve

substantial bending-torsion coupling, an unbalanced lamina-

tion scheme was chosen. Unbalanced laminates have an unequal

number of +e and -e plies. However, a midplane symmetric

ply arrangement was still required. Carrying the unbalance

to the limit results in a unidrectional laminate with all

plies at +e or all plies at -8. To improve the toughness

(criterion seven) of a unidirectional, off-axis laminate, the

center two plies would have a zero-degree ply angle. The

total thickness was chosen to be six plies. Five different

laminates were selected as representative of a wide range

of bending-torsion coupling stiffnesses, both positive and

negative. The first two laminates, [+302/0]s and [-302/0]s ,

were chosen because a unidirectional laminate with e = 300

exhibits the highest bending-torsion coupling stiffness

(D6) 11 The next two laminates, [+452,/0] s and [-45 2/0]s P

were chosen because a unidirectional laminate with e = 45*

exhibits the highest torsion stiffness (D6 6 ), but still has
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a large D1 6. The final laminate, [02/90]S, was chosen be-

cause a unidirectional laminate with e = 00 exhibits the

highest bending stiffness (D11 ) and zero D1 6. During the

test program, another laminate, [*45/01 s , was added because

it had the same theoretical D and D66 as [+452/0] s , with

less Dl6' To minimize the number of test specimens which

had to be constructed, the [+6 2/0 ]s and [-e2/01s test spe-

cimens were actually the same laminate, simply rotated

180 degrees about the x-axis (Fig. 1)

The test specimens would have to have an overall

length of 330 mm (13 in) and a chord of 76 mm (3 in), be-

cause this was the largest size that could be constructed

satisfying criteria four and six. The overall length in-

cluded a 25 mm (U in) loading tab, making the effective

cantilever plate length 305 mm (12 in). Finally, in an

effort to minimize plate stiffness, an airfoil shaped

fairing would not be used on the plate for wind tunnel

tests. This had the added advantage of making the plate

stiffness easier to calculate.

3.2 Test Specimen Preparation

The test specimens were constructed from Hercules

AS/3501-6 graphite/epoxy prepreg tape from Lot No. 1643.

The tape was 305 mm (12 in) wide and had a nominal thick-

ness of 0.134 mm (0.00528 in). Individual plies were cut
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to the proper size and angular orientation using aluminum

templates, and assembled into 305 mm (12 in) by 356 mm

(14 in) laminates. The laminates and curing materials (Ap-

pendix C) were arranged on an aluminum curing plate especi-

ally designed by students in TELAC for use with graphite/

epoxy laminates having a length and width as stated above.

The laminates were cured in a Baron model BAC-35 autoclave

using the cure cycle listed in Appendix C. After curing,

the laminates were post-cured in a forced air circulation

oven at 3501 F for eight hours. After post-curing, a rec-

tangular test specimen 330 mm (13 in) long and 76 mm (3 in)

wide was cut from each of the four laminates using a diamond

coated cutting wheel mounted on an automatic feed, milling

machine.

The thickness of a graphite/epoxy plate tended to

vary over its surface. Therefore, the plate thickness was

measured at several different locations and averaged. The

same procedure was followed in measuring the length and

width, although the variation was much less. The averaged

measurements for each test specimen appear in Appendix D,

along with the nominal values. The thickness variation

between laminates (all were six ply) was 0.033 mm (0.0013 in)

with the average being 0.807 mm (0.0318 in). This compared

favorably to the nominal thickness of 0.804 mm (0.0317 in)

for a six ply laminate. The laminates were also weighed

on a triple beam balance, from which the material density
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(p)for each test specimen was calculated. The average den-

sity was 1.53 x 103 kg/m 3 (0.0554 lb/in 3 ) with a maximum

variation of 0.06 x 103 kg/m 3 (0.0022 lb/in 3). This again

compared favorably with a nominal density of 1.52 x 103 kg/m3

(0.055 lb/in 3 ) for graphite epoxy.

Loading tabs 83 mm (3.25 in) x 25.5 mm (1 in) were

machined from 2.4 mm (0.094 in) aluminum plate and bonded to

the base of each test specimen with epoxy, cured at room

temperature. The loading tabs were intended to aid in align-

ing the test specimen in the clamping fixture and to prevent

damage to the plate surface fibers.

To get an indication of the lateral deflections the

plate would experience during the wind tunnel tests, strain

gauges were attached to the base of each test specimen at

the midchord, as shown in Fig. 4. Two Micro Measurements

EA-03-187BB-120 strain gauges, from Lot. No. R-A21AB02 with

a gauge factor of 2.085, were attached to each test specimen

(one on each side) to measure bending strain, Two BLH-SR4;

FAED-25B-12-59; Serial No. 5-AE-SC strain gauge rosettes

from Lot No. A-315 with a gauge factor of 2.01 were attached

to each test specimen (one on each side) to measure torsion

strain. The two bending gauges were wired together as a

two-arm bridge circuit with three external lead wires approxi-

mately 305 mm (12 in) long. The two torsion gauges were

wired together as a four-arm bridge circuit with four external

lead wires. Wiring the strain gauges on either side of the

* - r - - .- -- -
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- 76.2 mm (3")

Graphite/Epoxy Plate

305 mm (12")
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12.7 nam 0.5")

Loading Tab 25.4 m (1")____I
j - 82.6 m (3.25")

Figure 4. Samrple Test Specimen
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plate together, in this manner, doubled the signal output

for each channel (bending and torsion) and provided auto-

matic temperature compensation. This temperature compen-

sation was very important during the wind tunnel tests, where

air flowing over an uncompensated gauge would cause a zero

shift as the tunnel velocity was varied. The final step,

after all solder connections had been made, was to coat the

gauges with Micro Measurements M-Coat A, an air-drying poly-

urethane, for protection.

3.3 Test Apparatus and Procedure

(a) Static Deflection Tests

The static deflection test setup is shown in Fig. 5.

It consisted of a 330 mm (13 in) x 508 mm (20 in) plywood

base with six vertical steel rods approximately 760 mm

(30 in) long. The test specimen was clamped in a vise

machined from a 25.4 mm (1 in) x 152 mm (6 in) x 229 mm

(9 in) aluminum block, which was bolted to the base of the

test fixture. Two removable, low friction, pulleys were

attached to the vertical rods such that a force or moment

could be applied to the test specimen at any location along

its length. Rulers, graduated in 32nd's of an inch, were

also attached to the vertical rods to facilitate measuring

the test specimen's edge deflections. A deflection indicator
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C-,

(a) Force Test

(b) Moment Test

Figure 5. Influence Coefficient Test Apparatus
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was constructed out of balsa wood. It had needle pointers

on the ends and cotton threads attached to its midpoint and

ends. The threads, when routed over the pulleys and attached

to weights, transferred a force or moment to the test speci-

men (Fig. 5).

The deflection indicator was aligned with the lines

scribed on the test specimen at the 3/4 length point, and

the test specimen was clamped in the vise. The pulleys were

clamped to the middle two vertical rods (Fig. 5a) at the

proper height, and threads from the center of the deflec-

tion indicator were routed over the pulleys. The rulers

were adjusted to the proper height and zeroed with respect

to the deflection indicator pointers. Weights of 10, 20,

30, and 40 grams were successively attached to the threads,

first to give positive deflections, then to give negative

deflections. As each weight was attached, the readings

from both pointers were recorded, along with the weight.

Next, the pulleys were moved to the corner rods (Fig.

5b) and the end threads were routed over them, so as to pro-

vide a positive moment when the weights were attached. Weights

of 10, 20, 33.9, and 43.9 grams were successively attached to

each thread of the couple, and readings from both pointers

were again recorded along with the weights. The pulleys were

then switched to the corner rods on the opposite diagonal,

and the procedure was repeated for a negative moment.
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For each data point, the lateral deflection of the

elastic axis (wE) and the rotation of the test specimen

about the elastic axis (a) were calculated using the data

reduction formulas in Appendix E. The lateral deflections

obtained from the load test (Test 1) were plotted versus

load, with the slope being the bending flexibility influence

coefficient (cll). The angular deflections (a) from Test 1

were plotted versus load, yielding the bending-torsion

coupling flexibility influence coefficient (c21). The an-

gular deflections obtained from the moment test (Test 2)

were plotted versus moment, yielding the torsion flexibility

influence coefficient (c22). The lateral deflections ob-

tained from Test 2 were plotted versus moment to obtain

the other bending-torsion coupling flexibility influence

coefficient (c12). The flexibility influence coefficient

plots for the four test specimens appear in Appendix E.

The flexibility influence coefficients for a [+62/01 s and

a [-e 2 /01 s laminate will be the same, except for the sign

on c12 and c 2 1 , since they were physically the same test

specimen. Finally, the flexibility influence coefficients

for each test specimen were arranged in a 2 x 2 matrix (g)

and inverted to obtain the stiffness influence coefficient

matrix (K). The results of the static deflection tests are

discussed in Section 3.4.
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(b) Free Vibration Tests

The free vibration test setup, shown in Fig. 6, used

the same vise as the static deflection tests. The vice was

suspended by four spring steel strips, which allowed it to

translate along the z-axis (Fig. 2), but restricted motion

in all other directions. The vise was rigidly attached to

a horizontally mounted Ling model 420 shaker using a cylin-

drical aluminum adapter. The shaker had a peak force of

445 N (100 lbs) and a frequency range of approximately 5 to

3000 Hz. Since the shaker was driven by an audio amplifier,

there was a certain amount of distortion to the sine wave

output signal below 20 Hz. For some vibration tests, an

Endevco model 7701-50 "Isoshear" accelerometer was mounted

to the vise by a threaded mounting stud, and an Endevco

model 222B "Micro-miniature" accelerometer was mounted to

the test specimen, within 25 run of the base, using Eastman

910 adhesive. The outputs of these accelerometers, after

passing through special amplifiers, were connected to a

Tektronix type 502 dual beam oscilloscope so that both out-

puts could be displayed simultaneously. Finally, a digital

signal counter was attached directly to the signal generator

to provide an accurate frequency readout.

The test specimen was aligned and clamped in the vise.

A white paper screen was suspended behind the test specimen
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(a) Front View

(b) Side View

Figure 6. Free Vibrzationl Test Apparatus
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to aid in observing the vibration modes. The test began

with the signal generator set at, or below, 3 Hz. The fre-

quency was slowly increased until the first bending mode was

excited. The frequency was very finely adjusted until the

vibration amplitude peaked, as observed visually, and the

frequency was recorded. This procedure was repeated for

the second bending and first torsion vibration modes. Since

flutter is normally associated with the lower (bending and

torsion) vibration modes, only the first bending, second

bending and first torsion frequencies were obtained for each

specimen.

In an effort to improve the accuracy and repeatability

of the frequencies, the dual beam oscilloscope was used to

observe the accelerations of the vise and the test specimen.

The resonance frequency was defined as the frequency where

a 900 phase shift occurred between the two accelerometer

traces. If a complete 900 phase shift did not occur, then

the resonance frequency was taken to be the frequency where

the maximum phase shift occurred. In an attempt to obtain

a clear phase shift at the first torsion natural mode, the

specimen-mounted accelerometer was moved to different chord-

wise locations, all the way to the edge of the test specimen.

The results of the free vibration tests are discussed in

Section 3.4.
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(c) Wind Tunnel Tests

All wind tunnel tests were performed in the M.I.T.,

Department of Aeronautics and Astronautics, acoustic wind

tunnel. The acoustic wind tunnel is a continuous flow tun-

nel with a 1.5 m (5 ft) x 2.3 m (7.5 ft) free jet test sec-

tion 2.3 m (7.5 ft) long, located inside a large anechoic

chamber. The tunnel was powered by a 100 HP motor giving

it a continuously variable velocity range of 0 to 32 m/sec

(0 to 105 ft/sec). The tunnel control panel was located

outside the anechoic chamber. The velocity was controlled

by two levers (coarse and fine speed control). The coarse

lever controlled the motor field current and was variable

in fixed step increments only. The fine lever controlled

the motor shunt current and was continuously variable.

The total current being drawn by the motor, along with

voltage, were displayed at the control panel on analog

gauges. There was a 400 amp current limitation on the motor,

which was protected by circuit breakers. The tunnel velo-

city was read from an alcohol manometer, calibrated in

inches of alcohol, and located at the control panel. The

manometer was connected to a pitot tube located slightly

forward of the test section. A hydraulic motor, recessed

into the floor of the test section, provided a means of

mounting the test apparatus.
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The test setup, shown in Fig. 7, consisted of a turn-

table machined from aluminum mounted on a 635 mm (25 in)

tall pedestal made of 152 mm (6 in) steel pipe. The pedes-

tal was, in turn, mounted to the floor of the wind tunnel

test section. The vise from the static deflection tests

was fastened to the free rotating portion of the turntable.

A wooden cover disk 508 mm (20 in) in diameter, shown re-

moved in Fig. 7a and attached in Fig. 7b, was used to pro-

vide smooth airflow past the test specimen. The disk, which

had the angle of attack marked on its edge in 20 increments

up to 180, rotated with the test specimen. A pointer at-

tached to the fixed base provided a consistent means of

reading the angle of attack. An aluminum rod, attached to

to the disk and extending outside the test section, allowed

the angle of attack to be varied while the test was in

progress.

A terminal strip attached to the underside of the disk

provided a convenient means of connecting the test specimen

strain gauge lead wires to the instrumentation wiring harness.

The instrumentation system was a Gould 2400 series four chan-

nel strip chart recorder. The recorder had a four arm D.C.

bridge preamplifier installed in channel 1 and a two arm

D.C. bridge preamplifier installed in channel 2. The recorder

also had an internal time base generator which marked the

strip chart at one second intervals. The preamplifier had
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(a) Cover Disk Removed

P

(b) Cover Disk Attached

Figure 7. Wind Tunnel Test Apparatus
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the capability of both attenuating and amplifying the input

signal. The strip chart speed could be set at 5, 10, 25, 50,

100, and 200 mm/sec plus each speed could be divided by 100.

The chart speed was accurate to * 0.5%. To provide a record

of the test specimen deflections, the torsion strain gauge

was attached to channel 1 and the bending strain gauge was

attached to channel 2.

The test specimen was aligned and clamped in the vise.

The cover disk was installed, and all gaps were covered with

tape. The strain gauge lead wires were attached to the

terminal strip, and the strip chart recorder was adjusted

according to the manufacturer's instructions. The test

number and test specimen, along with test section tempera-

tures and atmospheric pressure, were recorded on a data

sheet. The first three natural vibration frequencies were

recorded on the strip chart by giving the test specimen a

bending deflection and letting it oscillate, then giving

it a torsion deflection and letting it oscillate. Static

calibrations were performed by giving the test specimen a

series of known pure bending and torsion tip deflections

and appropriately annotating the strip chart deflections.

The angle of attack was adjusted to zero, and the wind

tunnel was started and set at a low velocity (< 8 m/sec;

25 ft/sec). After the velocity stabilized, a reading was

taken from the alcohol manometer andannotated on the strip
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chart, in inches of alchol. The angle of attach was then

swept from 00 to 120 (sometimes to 180 if deemed appropri-

ate) in 20 increments, while the velocity was held constant.

Each angle of attack was annotated on the strip chart. The

angle of attack was returned to zero and the tunnel speed

increased slightly. The new manometer reading was annotated

on the strip chart, and the angle of attack sweep was re-

peated. The strip chart recorder was run at 1 mm/sec for

most of the test. When oscillation was detected, a two

second expanded record (100 or 200 mm/sec) was made. For

some test specimens, at higher angles of attack, the oscil-

lations would begin very abruptly. To get better data on

the angle of attack, where flutter actually started, the

angle of attack was increased in 1° increments in this

region. This test procedure was repeated until either the

the maximum tunnel speed was reached, or the test specimen

deflections became excessive. At higher tunnel speeds, the

maximum angle of attack tested was reduced to prevent damage

to the test specimen. For the specimens which exhibited

flutter at zero angle of attack, the normal procedure was

to obtain two or three more data runs at velocities slightly

higher than the velocity where the test specimen fluttered

at zero angle of attack.

Divergence testing often results in the destruction of

a test specimen. Since this was not a desirable result,
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wind tunnel speeds were increased in very small increments

as the divergence velocity was approached. The deflections

of the test specimen were closely monitored, and when it

would no longer return to a zero deflection state, the

tunnel velocity was not increased further. The extreme

flexibility of the test specimens also increased the allow-

able margin for error.

Finally, after all the desired data was taken, the

tunnel was shut down and the temperature of the test sec-

tion was recorded on the data sheet. Since the wind tunnel

was a continuous flow variety, temperature increases of up

to 100 F were encountered during test runs. The test speci-

men was removed from the vise and another test specimen

installed. When going from a [+e2 /01s specimen to a

[-e2/0]s specimen, the turntable was simply rotated 180

degrees, while the specimen remained undisturbed. The test

procedure was then repeated for the new test specimen.

After the wind tunnel tests were complete, the mano-

meter readings were converted to indicated velocity, and

then to true velocity using the conversions in Appendix E.

The temperature used for the true velocity correction was

the average of the start and finish temperature for each

run. The oscillation frequencies were obtained manually

and annotated on the strip chart, along with the indicated

velocity. The static calibrations were used to obtain an
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approximate relationship between test specimen deflection

and strain gauge output using the procedure outlined in

Appendix E. This relationship was used, on selected tests,

to calculate the test static deflections (not oscillation

deflections). The peak to peak oscillation amplitude of

the bending and torsion strain gauges, on selected tests,

was also annotated on the strip chart. Finally, the flutter

boundary velocities, along with the dimensionless reduced

flutter speeds (U/bw L) were plotted versus angle of attack

for each test specimen. On selected tests, the test speci-

men deflection, for a given angle of attack, was plotted

versus velocity. Also, flutter amplitude, for a given

angle of attack, was plotted versus velocity for selected

tests. These test results are discussed in Section 3.4.

3.4 12st Results

(a) Static Deflection Tests

The flexibility influence coefficients (c ij) which are a

measure of the structure's deflection for a given load, were

obtained by determining the slope of the lines plotted in

Appendix E. All the plots were linear, with the exception

of c2 2 for the [02/901 s test specimen. For this plot, a

linear approximation was used to determine the slope. The

data scatter on all the plots was less than 10%. The flexi-

bility influence coefficients could have been arranged in
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a 2 x 2 matrix and inverted to obtain the stiffness influence

coefficients (ki ), which are a measure of the force a struc-
1J

ture exerts for a given displacement. However, for this

section, the flexibility influence coefficients will be exa-

mined directly. Table 1 lists the experimentally obtained

inflence coefficients for each test specimen.

TABLE 1

EXPERIMENTAL FLEXIBILITY INFLUENCE COEFFICIENTS

Test C1 1  c12  c2 1  c2 2  Coupling
Specimen (ft/lb) (ft/ft.lb) (rad/lb) (rad/ft-lb) Factor (K)

[02/90 ]s 0.18 -0.03 -0.02 2.3 0.0014

[±45/01 0.60 -0.16 -0.13 1.06 0.033
s

[+452/01 s  0.98 -0.76 -0.75 2.7 0.22

[-452/01s 0.98 +0.76 +0.75 2.7 0.22

[+302/0] s  0.64 -0.80 -0.82 3.0 0.34

[-302/01 s 0.64 +0.80 +0.82 3.0 0.34

A measure of the accuracy of these static deflection

tests was that, according to Maxwell's Law of Reciprocal

Deflections, c1 2 must equal c2 1. All of the test specimens

showed excellent agreement in this area.

The coupling factor (K), included in Table 1, was de-

fined as
- c1 2c21

Kic c

11 22
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and was a dimensionless measure of the amount of bending-

torsion coupling a test specimen possessed. One observes

that going from a balanced to an unbalanced laminate sig-

nificantly increased the coupling. Also, the [+302/01 and

[-302/01 s test specimens had the highest coupling of those

tested.

In going from the balanced [±45/0] test specimen to
5

the unbalanced [+452/01 s test specimen, the torsional flexi-

bility (c22 ) increased by a factor of 2.5, and the bending

flexibility (C1 1 ) increased by a factor of 1.6. The reader

should also note that the [+302/0]s test specimen was more

flexible in torsion than the [O2/90] s test specimen.

(b) Free Vibration Tests

Excitation of the torsion vibration mode was extremely

difficult on the [02/901 s and the [e45/0] s test specimens,

which had very little bending-torsion coupling. Addition-

ally, the torsion mode was only lightly excited on the other

test specimens. The accelerometer bonded to the test speci-

men was also largely unsuccessful for the torsion mode, be-

cause the phase shift was very slight. Since the shaker

was driven by an audio amplifier, the output signal was

distorted below 20 Hz. This made using an oscilloscope to

detect phase shift in the first bending mode difficult.

The phase shift technique did, however, work well for the
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second bending mode.

Frequencies of the lowest three natural vibration modes,

obtained from both the shaker and wind tunnel tests, are

tabulated in Appendix E. The averaged frequencies for each

test specimen appear in Table 2. Frequencies from both

sources were all within 3% of the average. The [+e2/01 s

and [-92/0] test specimens, being the same physical plate,

had the same natural frequencies.

TABLE 2

EXPERIMENTAL NATURAL FREQUENCIES (AVERAGE VALUES)

Test ist bending 2nd bending 1st torsion
Specimen freq (Hz) freq (Hz) freq (Hz)

[02/90]s 11.1 69.0 42.2

[*45/0] 6.07 38.5 77.4
2s

4.83 30.1 51.1

[-452/01 58

In going from the balanced [±45/0] s test specimen to

the unbalanced [+452/0] s test specimen, the torsion fre-

quency, which is largely dependent on the torsional flexi-

bility of the specimen, decreased by 34%. Also, the first

bending mode frequency decreased by 20%. These results
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were consistent, at least in direction, with those of the

static deflection tests.

The situation becomes slightly more confusing when the

frequencies of the other test specimens are compared with

their flexibility influence coefficients. The first and

second bending mode frequency trends correlate well with

the trends of the bending flexibility influence coefficients.

However, the trends for the torsion frequencies and the tor-

sion flexibility influence coefficients had poor correlation.

This indicated that the bending torsion coupling must be

primarily affecting the torsion frequency. As an aside,

when stiffness influence coefficients were compared to

natural frequencies in this manner, one was led to conclude

that the coupling primarily affected the bending frequencies.

All the test specimens, except the [02/ 901 s specimen,

exhibited first bending as the lowest frequency, followed by

second bending, and finally first torsion. The [02/901 s

test specimen started with first bending, followed by first

torsion and finally second bending.

(c) Wind Tunnel Tests

The primary objective of the wind tunnel tests was to

determine the zero initial angle of attack (a0 = 0) diver-

gence and flutter velocities for each test specimen. Since

the test velocities were low and the test specimens quite
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flexible, the onset of flutter at zero a0 tended to be gra-

dual. For consistency, the flutter threshold was defined

to be the velocity where the oscillation amplitude stabi-

lized and the waveform became periodic. Determining the

threshold for stall flutter was somewhat easier, because

oscillation tended to begin abruptly when the stall angle

of attack was reached.

The type of flutter (bending, torsion or bending-

torsion) could not be determined completely from the ampli-

tude of the bending and torsion strip chart channels. This

was because, for a plate with bending - torsion coupling, the

elastic axis was not located at the midchord, where the

strain gauges were located. So a pure bending deflection

excited both the bending and torsion strain gauges. The

problem was overcome by defining bending flutter as oscil-

lations with a frequency very close to one of the bending

natural frequencies. Torsion flutter was said to occur

when the frequency was close to the torsion natural fre-

quency, and bending-torsion flutter occured at a frequency

between the other two.

On test 9, with the [-452/01 s test specimen, a torsion

strain gauge failed due to excessive deflection about half

way through the test. The test was completed using the

bending channel only. The malfunction was in a wire sol-

dered to the terminal, which was repairpd and caused no

further problems. A bending strain ga e on the [-30 2/01 s
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test specimen failed at the end of Test 3, also due to ex-

cessive deflections. This gauge was not repairable, so

Tests 14 and 15 were run with only one bending strain gauge.

Temperature fluctuations during these two tests caused a

zero drift on the bending channel. This zero drift made the

data worthless for determining static deflections. However,

the data were satisfactory for determining oscillation

frequencies and amplitudes.

The flutter threshold velocity was plotted versus ini-

tial angle of attack in Fig. 8. The test specimens exhibited

markedly different behavior. The [02/90] test specimen, with

no bending-torsion coupling, exhibited bending-torsion flutter

with a frequency of approximately 30 Hz for angles of attack

below two degrees and torsion flutter with a frequency of

approximately 42 Hz for higher angles of attack. The test

specimens with large positive bending-torsion coupling,

[+302/013 and [+ 4 5 2/ 0 1 s , exhibited primarily bending-torsion

flutter at 28 Hz and 24 Hz, respectively. The flutter thres-

hold velocity did not drop significantly with increasing

angle of attack, probably because the coupling caused a de-

crease in the tip angle of attack, preventing it from stall-

ing. At an angle of attack of 18 degrees, the flutter thres-

hold for the [+302/01 s test specimen dropped significantly

and the flutter changed to torsion flutter at 55 Hz. The

C±452/0] s test specimen, which was stiff in torsion and had
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only a small amount of positive bending-torsion coupling,

would not flutter at zero angle of attack within the 32 m/sec

maximum speed for the wind tunnel. However, at angles of

attack above eight degrees, it behaved similarly to the

(02/901s test specimen. The flutter was primarily torsion

at 60 Hz. The test specimens with large negative bending-

torsion coupling, [-302/01 s and [-452/0] s , exhibited divergence

at zero angle of attack. These two test specimens exhibited

primarily bending flutter with frequencies of 4.5 Hz and

4.0 Hz, respectively, at angles of attack greater than one

degree. This flutter was more of a Von Karman vortex shed-

ding buffet then a true stall flutter.

Several data points in Fig. 8 have been marked with a

') to indicate a high frequency, low amplitude oscillation.

The [02/901 s test specimen exhibited bending oscillations

at 69 Hz and torsion oscillations at 145 Hz. The [*452/0]s

test specimen exhibited torsion oscillations at 108 Hz.

These oscillations indicated that the second bending and

second torsion modes had been excited, which happened because

the plates were quite flexible. They do not represent the

phenomenon with which this study is concerned.

The effect of bending-torsion coupling on the zero

angle of attack flutter velocity could not be determined

directly from Fig. 8. This was because the test specimens

had varying amounts of torsional stiffness, which strongly
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affect the flutter velocities. To cancel out the effect of

torsional stiffness, the dimensionless reduced flutter

velocity (UF/ba) was plotted versus angle of attack in

Fig. 9. In this parameter, b is the semichord and w is

the first torsion natural frequency, which was obtained

experimentally.

The trends for each test specimen are similar to Fig.

8, as one would expect. However, in Fig. 9, the O2 /90] s

test specimen had the highest zero angle of attack reduced

flutter velocity, followed by the [+452/01 s test specimen,

and finally the [+302/0 s test specimen. Since the

[+302/01 s test specimen had the largest positive bending-

torsion coupling, the [+452/0] s test specimen had somewhat

less, and the [02/ 901s test specimen had none, one may

conclude from this very limited sample size that zero angle

of attack flutter reduced velocity was inversely propor-

tional to positive bending-torsion coupling.

The [-452/01s test specimen had a higher reduced di-

vergence velocity (UD/bwa ) than the [-302/0]s test specimen.

So, using the same logic as before, one may conclude that

divergence velocity was inversely proportional to increas-

ingly negative bending-torsion coupling. Visual observa-

tions indicated that divergence was impossible for test

specimens with substantial positive bending-torsion

coupling.
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Static tip deflections, both atip and w , for theetip

[+452/0]s, [*45/0] s , and [-452/0] s were plotted versus velo-

city in Figs. 10, 11 and 12, respectively. The tip deflec-

tion data were obtained using the data reduction procedure

in Appendix E. This data reduction procedure, which relates

strain gauge readings to tip deflections through static cali-

brations, was only an approximation. Therefore, Figs. 10 -

12 must be examined for qualitative information only. The

lines faired on the plots represent a "best fit" to the

available data, which have been arbitrarily extrapolated to

indicate some trends. The a tip was the sum of the initial

angle of attack (a0 ) and the elastic twist (ae).

Figure 10 indicates a linear relationship between

lateral tip deflection and velocity. This seems odd, be-

cause the force on the wing is a function of the dynamic

pressure (q), which is a function of the square of the

velocity. One would expect this relationship to be para-

bolic. Two possible explanations are offered. First, the

relationship was parabolic and the data were somewhat in

error. Second, the bending-torsion coupling reduced the

tip angle of attack to a low value as the test specimen was

bent laterally. Unfortunately, the plot of the tip angles

of attack doesn't support this second explanation. However,

values for a e obtained from the strip chart were extremely

-1 ' :i i ... -; J :1 r , , .. . . ' - :- -. -.. .-- -- , - - .
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sensitive to slight errors in reading the strip chart. This

was compounded by the fact that buffeting of the test speci-

mens made it difficult to get an accurate strip chart reading.

Figure 11 indicates a more parabolic relationship be-

tween the lateral tip deflections and velocity. Also the tip

angle of attack increases with increasing velocity as one

would expect for a wing with low bending-torsion coupling.

More data points were available for Fig. 11 and they have

good continuity.

Figure 12 shows the expected divergent response ten-

dencies of a wing with negative bending-torsion coupling.

The flutter amplitude was plotted versus velocity for

the [+4 5 2/01 s, [±45/0]s, and [-452/0]s test specimens in

Figs. 13, 14, and 15, respectively. The flutter amplitude

was unreduced, unamplified, peak to peak oscillation data

directly from the strip chart. It has no significance

other than to indicate where the flutter starts, for a given

initial angle of attack, and to indicate how rapidly the

magnitude increases. For both the [+452/01 and [-4 52/O]s

test specimens flutter beings quite close together for

several angles of attack. While, for the [*45/0] s test

specimen the occurrence is more spread out.
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CHAPTER IV

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

Work done by Boyce 1 8 , Crawley 1 9 , and, in particular,

Turner1 0 showed that stiffness properties for graphite/epoxy

laminates experimentally obtained from in-plane extensional

loading were generally higher than material properties ob-

tained from out-of-plane flexural loading. The standard
TELAC values for EL , ET , GLT and vLT' which appear in Ap-

pendix A, were obtained for Hercules AS/3501-6 G/E from in-

plane loads. Turner, through a series of out-of-plane

flexural static and dynamic tests, established an alterna-

tive set of material property values for AS/3501-6 G/E.

These material property values also appear in Appendix A.

Turner's values, while not statistically significant like

the TELAC values, do constitute a basis for comparison.

Therefore, in this chapter, experimental results will be

compared to t'eoretical results using both TELAC and Turner

material properties for graphite/epoxy. Additionally, dis-

cussion, in several instances, will be limited to quali-

tative "trends" due primarily to the approximate nature of

the data being compared.

4.1 Static Deflection Tests

The theoretical and experimental flexibility influence
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coefficients for each test specimen appear in Table 3. For

clarity, they have been arranged in 2 x 2 matrices. As

stated before, c1 1 is the bending flexibility, c2 2 is the

torsion flexibility, and c1 2, c2 1 are the bending torsion

coupling flexibilities.

Values for c11 calculated from Turner material proper-

ties were within 10% of experimental values. The c1 1 's

from TELAC material properties were lower than Turner

and experimental c1 1 Is, indicating that TELAC material pro-

perties resulted in a plate that was too stiff in pure

bending. The coupling flexibility influence coefficients

obtained from TELAC data were, however, in better agreement

with experimental data than those from Turner data.

The torsion influence coefficient for the [*45/0] tests

specimen obtained from Turner data had reasonable agreement

with the experimental value. The torsion influence coef-

ficients obtained from both Turner and TELAC data had poor

agreement with experimental values for test specimens with

large bending-torsion coupling. With one notable exception,

all theoretical values for c2 2 were lower than experimental

values. The exception was the [02/ 9 0 1s test specimen, where

theory predicted a substantially higher value for c2 2 than

was obtained from the experiments. For all test specimens,

except [O2/ 9 01s, torsion influence coefficients obtained

using Turner data had better agreement with experimental
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values than did torsion influence coefficients obtained

using TELAC data.

There were several possible reasons for differences

between theoretical and experimental torsion influence co-

efficients. First, the two term deflection equation may

not adequately represent the actual deflection of the

structure. Additional terms would allow more degrees of

freedom. Second, the assumption that the plate was chord-

wise rigid when undergoing torsional deflections may not

be true, especially for test specimens with large bending-

torsion coupling. Third, the theory used to obtain the

flexural moduli (D ij) for the plates, as presented in

Chapter II, assumed small deflections and, consequently,

neglected transverse shear. If transverse shear was pre-

sent, the plate would become more flexible in torsion.

Further, if transverse shear increased with increasing

bending-torsion coupling, then for test specimens with

large bending-torsion coupling, one would expect the experi-

mental torsion flexibility influence coefficients to be

much larger than the theoretical influence coefficients.

This was the case in this study.

The final significant trend was that the coupling

factor (K) for the theoretical flexibility influence co-

efficients was substantially higher than the experimental

coupling factor for all test specimens except [02/ 90]s.
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Both the theoretical and experimental coupling factors were

essentially zero for the [02/901 s test specimen.

4.2 Free Vibration Tests

A summary of the theoretical and experimental natural

frequencies for the first three natural vibration modes of

each test specimen appears in Table 4. Also included in

Table 4 are the theoretical uncoupled natural frequencies

calculated using the following equations.
1 9

(first bending) WIB = 3.52 m (4-1a)

(second bendingl w2B = 22.0 11 (4-1b)

48D6 6

(first torsion) wIT = 1.57 66 (4-1c)

where D is the bending flexural modulus, D6 6 is the tor-

sion flexural modulus, m is the mass per area, Z is the

length, c is the chord, and w is the frequency in rad/sec.

The theoretical first bending natural frequencies,

calculated using Turner material properties, were all within

5% of the experimental values, which was good agreement.

The first bending frequencies calculated from TELAC material

properties had poorer agreement with experimental values.
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In all cases, the TELAC first bending frequencies were

higher than experimental frequencies. The theoretical un-

coupled first bending frequencies, as one would expect,

showed good correlation with experimental frequencies for

test specimens with little bending-torsion coupling, and

poor correlation for test specimens with large bending-

torsion coupling.

The theoretical values for the second bending fre-

quencies from Turner material properties showed reasonable

agreement with the experimental values for test specimens

with low coupling, and poor agreement for test specimens

with large coupling. Second bending frequencies calculated

from TELAC material properties were not as good as the

frequencies from Turner data. The theoretical uncoupled

values for the second bending frequency had generally

poorer agreement with the experimental values than the

coupled solutions did.

The theoretical first torsion natural frequencies had

generally poor agreement with experimental values. Errors

for first torsion natural frequencies calculated using

Turner material properties were lowest for the [*45/0] test

specimen and highest for the [+452/01 s test specimen. More

importantly, one observes that the theoretical torsion fre-

quency values for the [:45/0] s and [+452/0] s test specimens

were essentially the same, while the experimental torsion
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frequency for the [+45 2/0]s test specimens was substantially

lower than the experimental torsion frequency for the [145/01 s

test specimen. The higher torsion frequency for the [145/0]5

test specimen indicated that it was much stiffer in torsion

than the [+45 2/0] s test specimen. As before, this was pos-

sibly due to neglecting transverse shear in the problem

derivation. Also, the fact that only the first three vib-

ration mode shapes were used to formulate the assumed deflec-

tion equation could affect the solutions somewhat. Finally,

as before, the assumption that the plate was chordwise rigid

during torsion vibrations could also affect the solution.

The theoretical natural frequencies should possibly be

checked by a more extensive Rayleigh-Ritz formulation and

a finite element analysis.

4.3 Divergence Velocities

Theoretical and experimental divergence velocities for

each test specimen appear in Table 5. Velocities were ob-

tained for plates using both TELAC and Turner material prop-

erties, and for both a two dimensional lift curve slope

(2c /2a) and one empirically corrected for finite span using

the correction expression in Chapter II. Of the six speci-

mens tested. only three would possibly exhibit any divergence

at zero initial angle of attack. These three test specimens

were [02/901s [-452,'01s, and [-302/01 s . Of these three,
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the [02/901 s test specimen exhibited flutter prior to diver-

gence, so no experimental divergence characteristics were

obtained. However, a theoretical divergence velocity was

still calculated for that specimen.

Theoretical divergence velocities were lower than experi-

mental velocities in all cases. The finite span divergence

for the [-452/0Is and [-302/0]s test specimens, calculated

using Turner material properties, were lower than the diver-

gence velocities calculated using TELAC material properties.

An experimental divergence velocity was not obtained for

the [02/90] s test specimen. However, the wind tunnel was

taken up to 27 m/sec (90 ft/sec) with this test specimen

and divergence did not occur. This contrasts to a theoreti-

cal finite span divergence velocity, calculated with Turner

material properties, of 22 m/sec (71 ft/sec). This indi-

cated that the theory would not adequately model the (02/901s

test specimen.

The fact that the theory predicted a lower divergence

velocity than found from experiments would suggest that the

actual plates were stiffer than the theoretical plates. This

observation is in sharp contrast to the observations in Sec-

tions 4.1 and 4.2, where the theoretical plates appeared

stiffer. The observation would tend to rebut the explana-

tions given in those sections. Since divergence is a func-

tion of aerodynamic force on the plate, as well as plate
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stiffness, the aerodynamic strip theory needed to calculate

the loads on the plate may have been a source of error.

Further, the finite span correction may have resulted in the

theoretical air loads being greater than the actual air loads.

Reference 13 suggests that an alternate empirical correction

for finite span effects may provide better correlation be-

tween theoretical and experimental results for divergence

problemnr. That empirical correction is

aC£ AR
- a 0 [ A (4-2)

AR + 4

Using this finite span correction, theoretical divergence

velocities were raised slightly. A final source of error

may have been the criteria used during the wind tunnel

tests to determine the divergence velocity. This, however,

is an improbable source of error.

4.4 Static Aeroelastic Tip Deflections

The theoretical tip lateral deflections (WETiP ) and

tip angles of attack (aTIP) were calculated using Turner

material properties, the empirical finite span correction,

and the solution technique in Chapter II. The tip deflec-

tions were plotted versus velocity for the [+452/0]s,.

[±45/01 s , and (-4 5 2/01 s test specimens in Figs. 16, 17, and

18, respectively. To allow a comparison with experimental
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results, the approximate experimental tip deflections, dis-

cussed in Chapter III, were included in these figures. The

lines represent the theory and the plotting symbols are the

experimental values. Since data from both theory and experi-

ment were approximate, a valid comparison must be limited

to trends only.

In Fig. 16, the lateral deflection trends for the

[+45 2/0] s test specimen show reasonable agreement between

theory and experiment, especially at higher velocities.

The trends for the theoretical and experimental tip angle

of attack, however, did not agree. The experimental values

indicated a very slight increase in tip angle of attack as

velocity was increased. Theory, on the other hand, showed

a substantial decrease in tip angle of attack as velocity

was increased. The implications of the theoretical results

were that the torsional moment resulting from bending-torsion

coupling more than overcame the aerodynamic moment. A pos-

sible reason was that the theoretical coupling factor (K),

discussed in Section 4.1, was much larger than the experi-

mental K. Of course, there was also the problem with read-

ing the strip chart, as discussed in Chapter III.

The agreement between theoretical and experimental

lateral tip deflections for the [*45/0] s test specimen in

Fig. 17 was not quite as good as for the [+45 2/0]s test

specimen, but was still reasonable. Again, the trends for
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the tip angles of attack did not correlate between theory

and experiment. The theoretical tip angles of attack did

not decrease as much for the [*45/01 s test specimen as they

did for the C+452/0] s test specimen, but the experimental

tip angle of attack values increased more for the [*45/0] s

test specimen. In view of the fact that the [*45/0] s test

specimen possessed slight positive bending-torsion coupling,

one would anticipate this type of behavior. The reasons

for the lack of correlation between experiment and theory

then would be the same as for the (+452/0]s test specimen.

Divergent tendencies of both the tip lateral deflec-

tions and angles of attack for the [-452/0]s test specimen

are apparent in Fig. 18. The trends were similar for both

the theoretical and experimental results, although the ex-

perimental data did not correlate well with theory for indi-

vidual angles of attack. Finally, the experimental tip angle

of attack data appeared to diverge faster than the theore-

tical data.

4.5 Flutter Velocities

The theoretical and experimental flutter velocities at

zero angle of attack for each test specimen appear in Table

6. Additionally, the nondimensional reduced flutter velo-

cities for each test specimen are presented. Since the
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TABLE 6

a. FLUTTER VELOCITIES

Test Theoretical (U-g Analysis) Experimental
Specimen TELAC Turner

18.0 m/sec 17.4 m/sec 25.9 m/sec
29s (59.0 ft/secl (57.0 ft/sec) (85.0 ft/sec)

42.1 36.6 32.0
[±45/0s (138) (120) (>105)

40.2 35.1 27.7
2 s (132) (115) (91.0)

50.3 43.6 diverged
2 s (165) (143) first

34.7 30.5 27.1
[+302/01 s (114) (100) (89.0)

50,0 42.3 diverged
3 s (164) (142) first

b. REDUCED FLUTTER VELOCITIES

Test Theoretical Experimental
Specimen TELAC Turner

[02/90] 2.21 2.21 2.56

[45/0] 2.21 2.21 >1.6

[+452/0]s  2.11 2.11 2.24

[-452/0] 2.64 2.63 diverged
first (1.01)

[+302/01 s  2.04 2.04 1.94

[-302/01s 2.93 2.90 diverged
first (.839)

.4
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[-452/01s and 1-302/0] s test specimens diverged prior to

fluttering, no experimental flutter velocities were obtained

for them. However, theoretical flutter velocities were

calculated for these two test specimens. Also, the [*45/0] s

test specimen did not flutter within the speed range of the

wind tunnel.

The correlation between theoretical and experimental

flutter velocities was generally poor. The flutter velocity

for the [2/901 s test specimen, calculated using Turner

material properties, was much lower than the experimental

flutter velocity. On the other hand, the theoretical flutter

velocities for the [+45 2/01 s and [+302/01 s test specimens,

calculated using Turner material properties, were much

higher than the experimental flutter velocities. The flutter

velocities calculated using TELAC material properties had

generally worse correlation.

The errors in the flutter calculations appeared to be

directly related to the inability of the theory to accurately

determine the torsion vibration frequencies. Therefore, one

would expect a somewhat better correlation between theoreti-

cal and experimental reduced flutter velocities (UF/bwa),

since the contribution of the torsion vibration frequency

had been eliminated. In fact, that was exactly what hap-

pened. The [02/901 s test specimen's error was reduced sig-

nificantly, and the errors associated with the [+452/0] s
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and [+30 2/01 test specimens were less than 10%. The

reader should note that the w used for the theoretical

calculations was obtained from the U-g analsyis for a very

large reduced frequency (k) value.

Since the trends were reasonably well predicted by the

theory, some conclusions on how bending-torsion coupling

affects flutter velocity were drawn, based on theoretical

results. The first conclusion was that increasingly posi-

tive bending-torsion coupling reduced the flutter velocity.

The second conclusion was that increasingly negative bending-

torsion coupling raised the flutter velocity. This was an

unrealistic situation, however, because the test specimens

with negative coupling diverged long before they reached

the flutter velocity.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The present study has sought to investigate the flutter

and divergence behavior of graphite/epoxy plates with various

amounts of bending-torsion stiffness coupling. As a conse-

quence, the static deflection and vibration behavior has also

been examined.

There was reasonable agreement between theory and exp-

eriments for the bending stiffness and first bending mode

natural frequencies. Also, for test specimens with low

bending-torsion coupling, there was reasonable agreement

for the torsional stiffness and first torsion mode natural

frequencies. There was, however, poor agreement between

theory and experiments for torsion stiffness and frequencies

of test specimens with large bending-torsion coupling. The

poor agreement was probably due to an inadequate number of

modes in the assumed deflection equation. Other possible

sources of error were the assumption that the plate was

chordwise rigid and the neglecting of the transverse shear

effect.

In this study, only the plates with negative bending-

torsion coupling (-D1 6 ) exhibited divergence within the

speed range of the wind tunnel. For these test specimens,
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the theory had reasonable agreement with the experiments.

The errors in the theory were possibly due to the approxi-

mate aerodynamic strip theory. For test specimens with

positive bending-torsion coupling, the theory predicted that

divergence would not occur. Experimentally, they did not

exhibit a divergence tendency within the speed range of the

wind tunnel. Based on the theory and the limited set of

experiments, the following observations can be made. The

zero angle of attack divergence velocity, for the plates in

this study, became infinite for positive bending-torsion

coupling above a certain critical value. This divergence

velocity decreased as the bending-torsion coupling decreased

from the critical value to zero, and continued to decrease

as the bending-torsion coupling became increasingly negative.

The theory and experiments had poor agreement for zero

angle of attack flutter velocities. However, the agreement

between theory and experiments for reduced flutter velo-

cities (U/bw) was good. This indicated that the inaccu-

racies in the theory were in the prediction of the torsion

vibration frequency. The test specimens with negative

bending-torsion coupling diverged prior to reaching their

flutter velocities, but a theoretical flutter velocity was

still calculated for them. As before, based on the theory

and the limited set of experiments, the following observa-

'* tions can be made.
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The zero angle of attack flutter velocity for the plate in

this study was low for positive bending-torsion coupling.

The flutter velocity increased as the positive bending-

torsion coupling decreased to zero, and continued to in-

crease as the bending-torsion coupling became increasingly

negative. This latter situation, for negative bending-

torsion coupling, becomes academic if divergence occurs

prior to flutter.

The test specimens exhibited markedly different flutter

behavior as angle of attack was increased. The test speci-

mens with low bending-torsion coupling exhibited classical

bending-torsion flutter at zero angle of attack, but it

changed to pure torsion flutter as the angle of attack was

increased. Also, the flutter boundary velocity decreased

rapidly with increasing angle of attack, stabilizing around
8

a = 120. This trend is similar to the results Rainey ob-

tained for metal plates and is classical stall flutter. The

test specimens with large positive bending-torsion coupling

exhibited bending-torsion flutter throughout most of the

angle of attack range. Additionally, the flutter boundary

velocities did not decrease with increasing angle of attack

below a = 120. This behavior was probably due to the fact

that the tip of the plate tended to have a lower angle of

attack than the root, so it did not stall. The test specimens
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with large negative bending-torsion coupling diverged at

zero angle of attack and exhibited a low frequency bending

flutter for angles of attack greater than zero. The flutter

boundary velocities here were significantly below the velo-

cities for the other test specimens for angles of attack

less than 120. These bending flutter velocities decreased

moderately with increasing angle of attack.

5.2 Recommendations

The theory should be further developed to give better

results for the torsion vibration frequencies and flutter

velocities. Improvement could probably be most easily faci-

litated by going to a finite element analysis which allows

more degrees of freedom and accounts for transverse shear.

If a Rayleigh-Ritz formulation is used, more terms should

be included in the deflection equation. For divergence

velocity calculations, a better aerodynamic theory, such

as lifting line theory, should be used. Also, the stall

characteristics of the plate should be explored further.

The effect of bending-torsion coupling as a passive

gust alleviation technique might hold some promise. Further,

bending-torsion coupling might be useful for increasing the

aileron reversal speed for a swept wing. Finally, the effect

of bending-torsion coupling on an oblique wing, particularly

with the roll degree of freedom, might prove interesting.



110

APPENDIX A

MATERIAL PROPERTIES

TABLE A-I

ORTHOTROPIC ENGINEERING CONSTANTS

Hercules AS/3501-6 Graphite/Epoxy

Property TELAC Values Turner Values

(in-plane loads) (out-of-plane loads)

EL 130 x 109 Pa 98 x 109 Pa

ET 10.5 x 10 9  7.9 x 10 9

VLT 0.28 0.28

GLT 6.00 x 109 5.6 x 109

Ply thickness 1.34 x 10- 6 m

Density 1.52 kg/m 3
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TABLE A-2

LAMINATE FLEXURAL MODULI

Laminate Modulus TELAC Turner
Material Properties Material Properties

D11 5.474 Nm 4.038 lb-ft 4.126 Nm 3.043 lb-ft

[02/901 s D1 6  0 0 0 0

D66 0.2600 0.1918 0.2425 0..1769

D 1,996 1.472 1.550 1.143
11

[*45/0] s  D1 6  0.5789 0.427 0.4364 0.3219

D 6 6  1.422 1.049 1.074 0.7920

1.996 1.472 1.550 1.143

[+452/0] s  DI6 1.254 0.925 0.9456 0.6975

D6 6  1.422 1.049 1.074 0.7920

D 1 3.541 2.612 2.703 1.994

[+302/01 s  D16 1.589 1.172 1.179 0.8695

D66 1.132 0.8350 0.8662 0.6389

- 7 . -
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APPENDIX B

THEORETICAL ANALYSIS

B.1 Mode Shapes
1 4 ,1 5

W= cosh£ I ( ) - cose l (c) - a l [sinh l ( L) - sineI (f)]

(B-1)

where l= 1.8751

= 0.7341

(x)= cosh 2 ( ) - cosz 2 ( ) - c2[sinh 2 ( ) - sinc2 ( )]

(B-2)

where e2 = 4.6941

a2 = 1.0185

(x) = sin(Z) (B-3)

0i(k) = 2.00 1(0.75) = 1.32

2(W)= -2.00 02(0.759) = 0.269

a () = 1.00 00 (0.75.) = 0.924

The following integrals were evaluated numerically using

ten point trapezoidal integration.
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1 idx = 0.783
0

1 0 1

12 - 1 2 tdx = 0.6370

13 - 1¢ dx =0.678
0

3 0 1

14 -i dx = 1.00

15 -~~ 02 dx =0.500a

6 2 dx = 3.76

0

170 (Z3")2  dx = 12.4
0 1

18 0 f (qc)2 dx = 1.23

0 a

0 2.19 =£2 4'42 dx = -6,43

£
1 0  () 2 dx = 485

0 (0) dx = 3,04

12 -I 02 dx = 1.00

- - ~2
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B.2 U-g Diagrams
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-' 0.1- UF = 1.0~ mvsec; 59.0 ft/sec

UF,/bwoa = 2.21

10 20 3

M Velocity m.. U (m/sec)

MROSICK~ BRANCH

TEIAC Material Properties

~-0.2

BENDING BRANCH

-0.t

-. 0.1 74msc 70f/e

0

10 003

Velocity v U (nrVsec)

C,

Turner Material Properties

I 02

Figure B-i. tJ-g Diagram, (02/901s Test Specinen
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U) UF 42.1 !!Vsec; 138 ft/sec0.1

C?

ITLAC Mterial Properte

W~~ ~ ~ 36.n,/sec20)tse

U)

Figure~ ~ ~ ~~UFbc 2.2U1 igm~.[4/0 etSpcx
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Ij= 40.2 Tv/s8C; 132 ft/sec

094U.bc 2.11

1[ 0.1-

9 -0.2 AC Material Properties

-0.3L

~0.1-

011

U (mlsec)

Turner Material Properties
0.2

Figure B-3. U-g Diagram, [+5/] Test Specinren
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0.1 U = 34.7 lTVsec; 114 ft/sec
02.04

. 0 1020 30 40
tr Velocity U (nl/secy

" -0.1

-0.2 MA Material Proete

-0.3

UF 36.5 rn/sec; 100 ft/sec

U.Vbw3, = 2.04
0 1 !f II-

20 30 40
Velocity u

(msec)

-0.1

Turner Material Properties

-0.2

,
-0.3

Figure B-4. U-g Diagram, [+302/0] s Test Speciven

. ..- -_ _ _ 7' .- .
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fl

Uo 3 sec;e165ft/sec

0

•20 40 60

Velocity U (rnVsec)

-0.1

-0.3 aESMaAG

UF = 43.6 mVsec; 142 ft/sec
0.1 2.63

ON20 40 60
I? Velocity " U (m/sec)

-0.1

-0.2 ITurnr Material Properties

-0.3

Figure B-5. U-g Diagram, [-452/0s, Test Specinn
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0.1 U = 50 m/sec; 164 ft/sec
Qj) F

u. -= 2.93

0 20 40 60

U velocity "~U (n/sec)

U)

-0.1

-0.2 [ TEEAC Material Properties

-0. 3 cmz
0.1 U= 42.3 nVsec; 142 ft/sec

.a Up,/,t 2.90

-2- 40 60

Velocity , U (m/sec)

-0.1

4 -0.2 Turner Material Properties

-0.3

Figure B-6. U-g Diagrm,, [-302/0] s 'Test Specin
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APPENDIX C

GRAPHITE/EPOXY CURING ZHNIQUES

Vacuum bag

Air bleeder
(fiberglass cloth)

Porous Teflon

Alminu plate
(top)

Nonporous Teflon

Paper bleeder

Porous Teflon

6-ply G/E laminate

(with peel ply)

Porous Teflon

_- ",Paper bleeder

Nonporous Teflon

_ _ _ _ _ _ _ _ _ _ _ Aluminum plate
(bottomM)

Figure C-1. Curing Materials
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TABLE C-1

AUTOCLAVE CURE CYCLE

1. Place aluminum curing plate with curing materials (Fig.

C-i) in autoclave and attach vacuum hose.

2. Perform vacuum test: Apply full vacuum (30 in) to curing

plate, turn off vacuum pump, and watch bleed-down for

five minutes.

3. Seal autoclave, apply full vacuum, and raise autoclave

pressure to 85 psi.

4. Raise autoclave temperature to 2400 F.

5. Maintain 85 psi and 2401 F for one hour.

6. Raise pressure to 90 psi.

7. Raise temperature to 3500 F.

8. Maintain 90 psi and 350* F for two hours.

9. Decrease temperature at a rate not exceeding 5* per

minute until temperature reaches 1301 F.

10. Release pressure and vacuum.

11. Open autoclave and remove curing plate.
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APPENDIX D

TEST SPECIMEN DIMENSIONS

TABLE D-1

NOMINAL TEST SPECIMEN DIMENSIONS

Parameter Value

Length 12,0 in 304.8 mm

Width 3.00 76.2

Ply thickness 0.00528 0.134

(nominal TELAC value)

Total thickness 0.0317 0.804

(6 x ply thickness)

Density 0.055 lb/in 3  1.52 x 103 kg/m 3

(nominal TELAC value)

i
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APPENDIX E

TEST DATA AND DATA REDUCTION METHODS

E.1 Flexibility Influence Coefficient Data Reduction

Test apparatus characteristics:

moment arm (1/2 couple) = 3.5 in

distance between front and rear rulers = 8.0 in

Test 1 raw data:

applied forces (FT) : :t 0.022 ib, ± 0.044, ± 0.066,

+ Q.088

obtain front and rear deflections for each applied force

Test 2 raw data:

applied moments (MT): ± 0.013 ft'lb, ± 0.026, ± 0.044,

± 0.056

obtain front and rear deflections for each applied moment

Data reduction for each test point:
front + rear

lateral deflection (wE) in units of feet =76
768

angular deflection (W) in units of radians -

tan- 1 1 front- rear

256
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WE 1 WE
C1 1  F T ~ 2 1  F'1C2 M 2 "R

Plots of all test points for each test specimen appear in

Figs. E-1 to E-4.

E.2 Indicated and True Velocity Calculations

Raw data:

manometer reading (halc) in inches of alcohol

temperature (*F) at start and finish

barometric pressure (hHg) in inches of mercury

Indicated velocity calculation:

specific gravity (Sg) of alcohol = 0.805 at 800 F

specific weight (walc) of alcohol = Sg(wH2O) =

(0,805) (62.4 lb/ft 3) = 50.2 lb/ft 3

2walch alc 59.3 __h_(iches

Uindicated -SL 59. ha(inches)

True velocity calculation:

Utrue = Uindicated(1) where = P/PsL and

PSL = 0.002376 sl/ft
3

P = Pa(PSf)/RTa (OK)
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F (ib) F (ib)

.10 1E .10 1
c 11 .8 c21 =F

.05 .05 = -0.02

-. 10 -. 05 .05 .10 -. 10 -. 05 .05 .10

-. 5 WE (ft) .-. (rad)

-. 10 -. 10

M (ft/lb) M (ft/Jb)

.10- WE _.3.10- _

12 2
= 2. 3

.05- .05,

-10 -. 05 .05 .10 -. 10 -. 05. .05 .10

-.5WE (ft) -. 5 (rad)

-- 10 
'-.10

Figure E-1. Flexibility Influence Coefficients, [02/ 90 1s Tes Speci.nn
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F (]Ib) F (ib)

.10 '.10

.05 C 1 1 =0.60 '.05 c2 01

-.10 -.05 .05 .10 -.10 -.05 .05 .10

--.05 WE-.05 
o rd

-.10 -.10

M (ft/Th) M (ft/lb)

.10 .10

.05 C 21 -0.16 '.05 C 2 =10

-.10 -.05 .05 .10 -.10 -.05 .05 .10
WE (ft) (rad)

-,05 -. 05

-. 10 --. 10

Figure E-2. Flexiility Influence Coefficients, [*k45/01 Test Specimen
s
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F U-b)F (ib)

10- .10

.05- c 1 1 =0.98 -. 05 =1 -0. 75

.05 **,E Cft) -.05 - (rad)

-10 -.10

M (ft/]b) M (ft/lb)

-.10 .10

c =1-0.76 c 2 2 = 2.7

-.05 .05

-.10 -.05

-.10 -.05 .05 .10 .05 .10

WE (ft) -a5 (rad)

-. 10 -10

Figure E-3. Flexi~bility Influenoe Coefficients, [+452/O]s Test SPecizrn
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F (ib) F (ib)

,1Q -. 10

C5cU=0. 64 -. 05 C12 =-0-82

-. 10 -. 05 .05 .10 -,10 -. 05 .05 .10
WE (ft) -05 ~(rad)

-,110-.10

.10 .10

'5 c 21 =-0,80 .'05 = 2 3.0

-. 10 -. 05

-.10 -. 05 .05 .10 .05 .10

-.05wE (ft) a .5 c (rad)

-. 10 -. 110

Figure E-4. Flexibility Influence Coefficients, [+30]1 Test Specinen
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R - 3089.8 ft/sec 2OK TI

T (*K) = 0.5556H TstartI Tostp ) + 460 ia 2

Pa(Psf) = SgHgwH2OhHg/1 2 = 70.72 hHg (inches)

where SgHg = 13.6

Utrue = h 'halc (inches)/a

E.3 Experimental Tip Deflection Calibrations

Calibration 1 raw data:

tip lateral deflections (6 A): _ 0.25 in; ± 0.5; ± 0.75;

_ 1.0

obtain strain gauge readings from strip chart in units

of mm

bending strain gauge (channel 2) S C)

torsion strain gauge (channel 1) ( C)

Calibration 2 raw data:

tip angular deflections (8) 4.78 deg; ± 9.55

obtain strain gauge readings from strip chart in units

of mm

By plotting each calibration point, obtain the following

slopes:
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ac (cal 1)

1A (cal 1)

8 (cal 1)
a2 =21 A (cal 1)

ac (cal 2)
a12

eA (cal 2)

a c (cal 2)
a22=

GA (cal 2)

From these, we can obtain the following transformation equa-

tion:

{ c (mm) [a 1 1  a 1 2] f A (in)

ec (mm) JLa 2 1  a 2 2 j 8A (deg)

Since we want the inverse relationship, the A-matrix is

inverted to obtain the final expression.

= [A1-18A  @c

From this expression, we can get approximate values for the

test specimen tip deflections knowing the strip chart strain

gauge readings.



ON

(a r-I 0 4 r-4 n v' 00 -4 -4 0 IV

$4 - 0; 4. r N e9 in (i

4-'Mmr mn in in

CO.

0 0N

r.) 4-I k 00 in 4 0 V;in

o -4 M c 0 a in 0o a i in N

u $40-
z -4 a)

.,1 40 uI in -4 Nco. N m.. -W u-f O N r -I

En f(n fl r-4 0; C'. . c;I '0 ' 0 :
0 - '.0 m r- Nn mn en in

co N

u. -4 w. u-f -1 0 -4 00 f -W r-q in 0-4
0 01

E-4 to 0 u-I w. -W C.n L ~n M. in

H >0
- 0 N

x a) L0n r- ON 00 .o 0i al O 0 (n1

u-I a C4. in 0 13i 0 in in:
.~0 u-I 4Z0 v (nr N in enI in

0
*rj
41w
w 0 r4 N .4 -I I-C4 f-4 r- N ?- -4 N.. r-4

0 l - 0 0
E4u- IV ( (n

+~ +



134

REFERENCES

1. Krone, N.J., Jr., "Divergence Elimination with Advanced
Composites", AIAA Paper No. 75-1009, 1975.

2. Weisshaar, T.A., "Aeroelastic Stability and Performance
Characteristics of Aircraft with Advanced Composite Swept-
forward Wing Structures", Air Force Flight Dynamic Labora-
tory Technical Report, AFFDL-TR-78-116, September, 1978.

3. Weisshaar, T.A., "Forward Swept Wing Static Aeroelasticity",
Air Force Flight Dynamics Laboratory Technical Report,
AFFDL-TR-79-3087, June, 1979.

4. Sherrer, V.C., Hertz, T.J., and Shirk, M.H., "A Wind
Tunnel Demonstration of the Principle of Aeroelastic-
Tailoring Applied to Forward Swept Wings", included in
the proceedings, "AIAA/ASME/ASCE/AHS 21st Structures,
Structural Dynamics, and Materials Conference", Seattle,
Wash., May, 1980.

5. Naberhaus, J.D., and Waddoups, M.E., "Dynamic Character-
istics of Advanced Filamentary Composite Structures",
3 volumes, Air Force Flight Dynamics Laboratory Technical
Report AFFDL-TR-73-111, September, 1974.

6. Griffin, K.E., "An Aeroelastic Tailoring Study of a High
Aspect Ratio Wing", included in the proceedings, "Third
Conference on Fibrous Composites in Flight Vehicle Design",
NASA TM X-3377, 1976.

7. Lynch, R.W., Rogers, W.A., and Braymen, W.W., "Aeroelastic
Tailoring of Advanced Composite Structures for Military
Aircraft", 3 volumes, Air Force Flight Dynamics Laboratory
Technical Report AFFDL-TR-76-100, April, 1977.

8. Rainey, G.A., "Preliminary Study of Some Factors which
Affect the Stall-Flutter Characteristics of Thin Wings",
NACA TN-3622, March, 1956.

9. Dugundji, J., and Aravamundan, K., "Stall Flutter and
Nonlinear Divergence of a Two-Dimensional Flat Plate Wing",
Aeroelastic and Structures Research Laboratory Technical
Report ASRL-TR-159-6, Department of Aeronautics and Astro-
nautics, M.I.T., July, 1974.

10. Turner, M.D., "Comparison of Static and Dynamic Test
Methods for Determining the Stiffness Properties of
Graphite/Epoxy Laminates", M.S. Thesis, Department of
Aeronautics and Astronautics, M.I.T., June, 1979.



135

11. Tsai, S.W., and Hahn, H.T., "Introduction to Composite
Materials, Vol. I: Deformation of Unidirectional and
Laminated Composites", Air Force Materials Laboratory
Technical Report TR-78-201, January, 1979.

12. Ashton, J.E., and Waddoups, M.E., "Analysis of Anisotropic
Plates", Journal of Composite Materials, Vol. 3, pp. 148 -
165, January, 1969.

13. Bisplinghoff, R.L., Ashley, H., and Halfman, R.L.,
Aeroelasticity, Addison-Wesley Publishing Co., Reading,
Mass., 1955.

14. Bisplinghoff, R.L. and Ashley, H., Principles of Aero-
elasticity, Dover Publications, Inc., New York, 1962.

15. Young, D., "Vibration of Rectangular Plates by the Ritz
Method", ASME Paper No. 50-APM-18, 1950.

16. Edwards, J.W., Ashley, H., and Breakwell, J.V., "Unsteady
Aerodynamic Modeling for Arbitrary Motions", included in
the proceedings, "AIAA/ASME 18th Structures, Structural
Dynamics and Materials Conference", San Diego, Calif.,
1977.

17. Crawley, E.F., "The Natural Mode Shapes and Frequencies
of Graphite/Epoxy Cantilevered Plates and Shells", M.S.
Thesis, Department of Aeronautics and Astronautics, M.I.T.,
June, 1978.

18. Boyce, D.A., "Material Damping of Graphite/Epoxy Double
Cantilever Beams", M.S. Thesis, Department of Aeronautics
and Astronautics, M.I.T., September, 1979.

19. Crawley, E.F., and Dugundji, J., "Frequency Determination
and Non-Dimensionalization for Composite Cantilever Plates",
Journal of Sound and Vibration, Vol. 72, No. 1, pp. 1-10,
8 September, 1980.



136

LIST OF SYMBOLS

A Amplitude of oscillation

a0  Two dimensional lift curve slope = 27

b Semichord = c/2

C(k) Theodorsen function

Cz Lift coefficient

c Chord

cij Flexibility influence coefficients

D. ijFlexural modulus for an anisotropic plate

EL Longitudinal modulus

E Transverse modulusT

e Distance between elastic axis and aerodynamic center

Ft Concentrated test load

GLT Shear modulus

g Structural damping coefficient

i z

k Reduced frequency = wb/U

k.. Stiffness influence coefficient
1)

LE Lift force at elastic axis

z Length of plate

ME Aerodynamic Moment

Mt Concentrated test moment

m Mass per area
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Pz Distributed lateral load

Qi Generalized force

Qij In-plane, on-axis lamina modulus

q Dynamic pressure

qi Generalized displacement

T Kinetic energy

t Time

t Plate thicknessP

U Velocity

UD Divergence velocity

UF  Flutter velocity

V Strain energy

W External worke

w Lateral deflection

wE Lateral deflection of elastic axis

wETIP Tip lateral deflection

Z Complex eigenvalue = (1 + ig)/w
2

a Angle of attack

a0 Initial angle of attack

a- Elastic twist

'TIP Tip angle of attack

Yi Mode shape (two dimensional)

e Ply angle

K Coupling factor
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VLT Major -Poisson 's ratio

VTL Minor Poisson's ratio

p, po Air density

i Mode shape (one dimensional)

w Frequency of oscillation

wa Torsional natural frequency

If




